Actuarial Data Science with R

Jorge Yslas

2026-01-07

Table of contents

Preface

1

Introduction to R
1.1 Imstallation
1.1.1 Imstallation of R
1.1.2 Installation of RStudio
1.2 R asasimple calculator
1.2.1 Logical operators
1.3 Robjects o e
1.3.1 Assignment
1.3.2 Datatypes
1.4 Vectors o . e
1.4.1 Accessing vector elements Lo L L.
1.4.2 Operations with vectors
1.5 Matrices, data frames, and lists L L 0oL
1.5.1 Matrices e e e
1.5.2 Dataframes
1.5.3 Lists e e
1.6 Functions
1.7 Packages.
1.8 Control Statements Lo
1.8.1 Conditional statements,
1.8.2 Loop statements Lo
1.9 Vectorized operations e
1.10 Reading and writing data Lo
1.10.1 Working directory
1.10.2 Writing data L Lo
1.10.3 Reading data L

R for Statistical Inference

2.1 Descriptive statistics L
2.1.1 Visual toolso

2.2 Probability distributions L
2.2.1 Tranformations Lo
2.2.2 Law of large numbers and central limit theorem

2.3 Parametric inference e 92

2.3.1 Maximum likelihood estimation 92

2.3.2 Adequacy of thefit 106

2.3.3 Other estimation methods 114

2.4 Multivariate distributions oL o 117
2.4.1 Multivariate normal distribution L. 117
2.4.2 Copulas 121
2.4.3 Constructing multivariate distributions from copulas 130
2.4.4 Dependence measuresot e e e e e 133

2.4.5 Fitting e 137

2.5 Linear regression Lo e 141
3 R for Finance 152
3.1 Market portfolio and CAPM 152
3.1.1 Mean-variance portfolio 152
3.1.2 Capital Asset Pricing Model (CAPM) 163

3.2 The binomial model 169
3.2.1 One-period binomial model 169
3.2.2 Multiperiod binomial model oo 174

3.3 The Black and Scholes model 186
3.3.1 Preliminars: Brownian motion 186
3.3.2 The Black and Scholes formula 191
3.3.3 Greeks 193

4 R for Insurance 197
4.1 The collective risk model 197
4.1.1 Discretization of claim amount distributions 199
4.1.2 Calculation of the aggregate claim amount distribution 202

4.2 Ruin theory 210
4.2.1 The surplus process e e 210
4.2.2 The adjustment coefficient L 0oL 213
4.2.3 Probability of ruino oo 215
4.2.4 Reinsurance0 e e e e 217
References 223

Preface

The objective of this module is to give a set of skills used in practice in financial and insurance
institutions. We aim at introducing students to the basic principles and practices of the R
programming language.

1 Introduction to R

1.1 Installation

R is a free software environment for statistical computing and graphics. It compiles and runs
on a wide variety of UNIX platforms, Windows and macOS. To help you write code in R,
RStudio is a free application that makes the task significantly easier. To get started, you need
to acquire your own copies of these two programs. If you already have R and RStudio installed
on your computer, it is a good idea to update to the latest versions by following the same step
since some of the packages employed later work only with recent versions of this software.

1.1.1 Installation of R
We start with the installation of R. The essential files for installation and packages can be

found on The Comprehensive R Archive Network (CRAN) website, http://cran.r-project.org/,
as shown in Figure 1.1 below.

@ cran-projectorg

The Comprehensive R Archive Network

bownload and Install R

and packages, Windows and Mac u

03l R for Linux (Debian, Fedora/Redihat, Ubuntu)

in the upper bax, not the source code , The sources have
u probably do not want 1o do it!

FA
Contributed

nload and install the software, or what the license terms are, please read our answers to
i

What are R and CRAN?

dentical, up-to-date, versions

Submitting to CRAN

CRAN Repository Policy and then use the web form

our submission

ing the policy. Please do not attach sub

Figure 1.1: CRAN webpage

http://cran.r-project.org/

For Windows users, click “Download R for Windows.” Then, you will obtain a screen similar
to Figure 1.2a below. Next, click the “base” link. After that, click on the link at the top of the
page that should say something like “Download R 4.5.2 for Windows” (see Figure 1.2b). This
will download an executable file for installation. Finally, open the executable and follow the
installation wizard.

(a) First page (b) Second page

Figure 1.2: Download R for Windows

For macOS users, click “Download R for macOS.” This will take you to a screen similar to
Figure 1.3. Then, depending on your computer, click “R-4.5.2.pkg” for Mac computers with
Intel processors or “R-4.5.2-arm64.pkg” for Mac computers with Apple silicon. This will
download an installation file. Finally, open the file and follow the installation steps.

If you followed the steps above, you should be able to open R. When starting R, a screen
similar to Figure 1.4 should appear.

Remark. The steps above were checked with R 4.5.2 (released 2025-10-31). However, you should
always download the most current release of R.

1.1.2 Installation of RStudio

Although the editor of R works fairly well, you should consider running R with RStudio. We
will use RStudio here because it makes using R much easier and gives you access to many useful
functionalities. For instance, these lecture notes were written using RStudio. To download
your copy, go to the RStudio download page https://posit.co/download /rstudio-desktop/.
Then, scroll down and click “DOWNLOAD RSTUDIO DESKTOP FOR MAC (WINDOWS)”
under the heading “Step 2: Install RStudio Desktop” (see Figure 1.5), which will download the
installer recommended according to your system. If the system suggested is incorrect, you can
select the appropriate one from the installers list. Then, download the installation file, open it,
and follow the installation steps.

https://posit.co/download/rstudio-desktop/

R for macOs

Mac 08X

R 4.2.2

package by checking the s

Latest rele,

Contributed

he teack R

part of macO$,

s ti 244 ortran 8 2.1 you wish to compile R packages from sources, you may need to
d GNU Fortran 8.2 - sce the tools directory:

the R app Mae GUI

GUI 1.78 for ma

» 08 Thi want o join GUI (see also Mac-
S ot intended for regular users. Read the INSTALL i for further nstructions.

ackage. Contsins R 363 framework, R app GUI 170 in 64-bit for
il

kage. Contains R 333 framework, R app GUI 1 69 in 64-bit
wo components are optiona] and cin be ommited when

Figure 1.3: Download R for MacOS

Test the installation by opening RStudio. You should see a screen similar to Figure 1.6.

Remark. Note that even if you use RStudio, you still need to download and install R. RStudio
runs the version of R installed on your computer, and it does not come with a version of R on
its own.

1.2 R as a simple calculator

We will start by using R as a calculator. To run R code, go to the console tab (bottom left in
the default RStudio arrangement). You will see a > symbol called the prompt. Now, type 1 +
2 after the prompt and press Enter. RStudio will display the following;:

>1 + 2
[1] 3

The [1] that appears next to our result indicates that the line starts with the first value in our
result. Some commands return more than one value, and their results may show up in multiple
lines. For instance, type the command 10:50, which produces 51 integer values from 10 to 50.
As a result, you will see something like the following;:

> 10:50

O R Console

R version 4.1.2 (2021-11-01) -- "Bird Hippie"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin2@ (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

‘help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

[R.app GUI 1.77 (80@7) aarch64-apple-darwin2@]

[History restored from /Users/jorgeyslas/.Rapp.history]

>

Figure 1.4: R console

SZPOSIt PRODUCTS © SOLUTIONS v LEARN & SUPPORT- EXPLORE MORE - Q DOMNLOAD RSTUBIO

Step 1:
Install R

RStudio requires R 3.3.0+. Choose a version of R that matches.

your computer's operating system

DOWNLOAD AND INSTALL R

Step 2:
Install RStudio Desktop

DOWNLOAD RSTUDIO DESKTOP FOR MAC

Size: 365.70MB | s
Released: 2022-12-15

56: FoasEsss | Version: 2022.12.0+353 |

—_———————————

Figure 1.5: Download RStudio

© - o] " - ndains 5 Projet
Console Terminal - Jabs S mironment Wsory Connectons Tuorisl -0
@ R412 - @ | mporoase - D 1somE e f st

R - | i Clobal Environment - Y
R version £.1.2 021-11-01) d Hippia®

Comyright () 2021 The R Foundation for Skatistical Computing

Platfors: aorchBi-opple-darmin2® C64-bit)

R is free softnare and coes with ABSOLUTELY NO WARRANTY.
You are melcome to redistribute it undor certain condition
Type *licenseQ)" or “licence()" for distribution details.

Natural. Language suppart but rumning in an English locale

R 15 0 collaborative project with rany cantrinutors
e “contributorsQ)” for more inforration and
“Eitation(>" on hom to cite § or & packages in pblications

for some desos, “help()" far on-line help, or
“Relp.StrtQ)" for an HIML broaser ntarface to helo.
Type a0 to quit R

Qi oker | @ vl Rerame | G e -
@ ot Documens > Tahion
= a7t Ak L0 s00m
i 2 s ssrm
etrenes b ToRkE A 18,2008 404

Figure 1.6: RStudio

(1] 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
[24] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Here, [24] indicates that the second line starts with the 24th value. We will come back to the
: operator later.

If we type an incomplete command and hit Enter, R will display a + prompt. This means that
R is waiting for the rest of our command. At this stage, we can finish the command and press
Enter or hit the Escape key to start over.

> 2 -
+ 3 +
+ 5
(1] 4

In what follows, the code will be shown in this way:

1+ 2

(1] 3

Note that we no longer display the prompt and that the results are presented after two hashtags
(##). The reason is that this makes it easier for you to copy and paste the code into your R
console.

Returning to using R as a calculator, Table 1.1 shows the arithmetic operators available in
R.

Table 1.1: Arithmetic operators

Addition +
Subtraction -
Multiplication *
Division /
Power -
Integer division %/ %

Modulus (remainder of integer division) %%

Lets now try some simple operations:

10

372 + 4 x 10

[1] 49

(372 + 4) * 10

[1] 130

One needs to be aware that the precedence for arithmetic operators in R follows the BODMAS
order: Brackets (), Orders ~, Division / and Multiplication *, Addition +, and Subtraction

Remark. If you want to learn more about how R gives precedence to all operators, type ?Syntax
in the console.

If we make a mistake in your code, R will let us know and indicate what the error is.

3 + *

Error in parse(text = input): <text>:1:5: unexpected '*'
1: 3 + *

Example 1.1. Find the present value of an investment that gives 1 in 5 years, assuming that
the interest rate is r = 3% compounded annually.

Solution.

(1 + 0.03)°(-5)

[1] 0.8626088

R also has several common constants and mathematical functions. These include the exponential

and log functions exp() and log(), and trigonometry functions such as sin() and cos(),
among others.

pi

[1] 3.141593

11

cos(2 * pi)

(11 1

log(10) # The default option is base e

[1] 2.302585

We can look at the full description of a function in R by using the “help.” Let us try this
with the log() function. For this, we need type help(log) or 7log. This will display the
documentation of the log() function in the tab Help (bottom right). Here, we will find out
that log() computes the natural logarithm by default. Moreover, looking at the rest of the
documentation, we will see that log() has, in fact, two arguments: x and base, the latter with
the default value of the mathematical constant e. When calling this function, we can specify
the argument names. In such a case, then the order does not matter:

log(x = 4, base = 10)

[1] 0.60206
log(base = 10, x = 4)
[1] 0.60206

However, if we do not specify the argument names, R will decide that x is the first argument
and base is the second one.

log(4, 10)

[1] 0.60206

log(10, 4)

[1] 1.660964

If we try to do an operation that is not mathematically defined, R will return NaN (Not a
Number).

12

log(-2)

[1] NaN

0/0

[1] NaN

1.2.1 Logical operators

Logical operators help evaluate certain conditions. For instance, we may be interested in
checking if an insurance claim is greater than (>) a given deductible. If this is “true,” then
the insurance company may pay the amount above the deductible. Table 1.2 displays a list of
logical operators in R. These operators return a Boolean value of either TRUE or FALSE.

Table 1.2: Logical operators

Less Than <
Less Than or Equal To <=
Greater Than >
Greater Than or Equal To >=
Equal To ==
Not Equal To =
Not !
Or |
And &

Following, we have some simple examples:

4 <=3

[1] FALSE

1==1

[1] TRUE

13

(31=2) & !(1>1)

[1] TRUE

1.3 R objects

An essential part of any programming language is the ability to store information in variables.
R lets us save data by storing it inside an R object. An object is just a name that you can use
to call up stored data. First, we need to see how to create objects.

1.3.1 Assignment
Objects in R are created using the assignment operator <-, that is, the less than symbol, <,

followed by a minus sign, -. Simply choose a name followed by <- and the information you
want to store. For example:

x <=1

Our variable will now be part of what is called the “working space.” We can print the value
stored in this variable by typing its name

X

(1] 1

or, alternatively, we can use the print () function
print(x)

(1] 1

We need to make sure that the assignment operator is well-written. Otherwise, we may obtain
an error:

x < -1

Error:
! object 'x' not found

14

There are a few rules regarding the name of an object in R. First, a name cannot start with
a number. Second, a name cannot use some special symbols, like =, !, §, @, +, =, /, or *,
Other than that, we can name our variables in any way we want. However, it is convenient
to choose a name that will help us (and others) easily read our code. Note also that R is
also case-sensitive. This means that in the following code, the variables my_variable and
My_variable are different objects:

my_variable <- 1

My_variable <- 2
my_variable

(1] 1

If we use a name that is already taken, R will overwrite any previous information stored in
that object:

x <- 3
X

[1] 3

x <- 10
X

[1] 10

Hence, it is good to check if the names we will use are already taken. We can see which object
names we have already used with the function 1s() or in the Environment tab of RStudio:

1s()

[1] "my_variable" "My_variable" "x"

We also need to be careful not to use the name of a function or constant that is already in R.
This can lead to hard-to-identify errors or incorrect outputs:

pi <- 10

sin(2 * pi)

15

[1] 0.9129453

To remove specific objects from the working space, we can use the rm() function:

rm(my_variable)

1sO)

[1] “My_variable" "pi" "X"

This can also be done using the RStudio interface. We need to ensure the Environment tab is
in Grid (not List) mode, tick the object(s) we want to remove from the environment and click
the broom icon.

To clean the whole working space, we type

rm(list = 1s())
1s(O)

character(0)

or click the broom icon in the Environment tab (List mode) in RStudio.

Remark. Objects can also be created using = instead of <-. Although = is simpler to type, we
do not recommend using it since it will make your code more difficult to read. Alternatively,
one can use the shortcut alt/opt + - to generate <-.

Just as we performed calculations with numbers in the previous section, we can do the same
with objects containing number references. Let us come back to Example 1.1. An alternative
solution using objects would be as follows:

maturity <- 5

r <- 0.03

(1 + r)~(-maturity)

[1] 0.8626088

As our analysis gets more complicated, we may want to save the results to access them later:

pv <= (1 + r)~(-maturity)
pv

16

[1] 0.8626088

For instance, if we now want to compute the present value of an investment that gives 75 at
the end of 5 years (assuming the same 3% interest rate), we can simply type:

75 * pv

[1] 64.69566

Let us imagine that we need to repeat the analysis above, but this time using different inputs
(for instance, a different interest rate). If we used the console solely, we would need to go back
in the console history, change where needed, and rerun the rest of the code. This is particularly
complicated when we have several lines of code. Hopefully, we can use scripts to avoid this
situation. To open a new script, go to File -> New File -> R script. This will open a new
script. Here, we can write our code and run it afterward using shortcuts such as Cmd+Enter or
using the Run button in RStudio.

1.3.2 Data types

R has different types of variables. These are some of the most commonly used:

1. Numeric - Any number in R.

2. Complex - Complex numbers (C)

3. Character - Collection of characters. For instance, the name of a student.
4. Logical - TRUE and FALSE

A difference between R and other programming languages, such as C++, is that we can declare
a variable without specifying its type. Instead, R will automatically determine the type.

Numeric

R is equipped with useful functions that can be used to find the type of a variable. For instance,
the class() function:

x <= log(2)
X

[1] 0.6931472

17

class(x)

[1] "numeric"

We can also check if a variable is of a certain type. For instance, the function is.numeric()
checks whether a variable is of the numeric type and returns a boolean value accordingly.

is.numeric(x)
[1] TRUE

R can store data only up to a certain point. This means that, for instance, 7, which has an
infinite decimal representation, is computed up to a finite number of decimal points. This is
the reason why expressions such as the next one do not give exactly 0 as a result:

exp(log(10)) - 10

[1] 1.776357e-15

R has a special command to represent infinity: Inf. We can check which is the largest number
below Inf using:

.Machine$double.xmax

[1] 1.797693e+308

Any number above this will be converted to Inf.

2e+308

[1] Inf

We can use logical operators to check if a number is below Inf.

2e+308 < Inf

[1] FALSE

18

2e+306 < Inf

[1] TRUE

Remark. The above notation using e is to specify scientific notation in R. For instance,

2e+2 # This corresponds to 2 * 1072

(1] 200

3.5e-1 # This corresponds to 3.5 * 107(-1)

[1] 0.35

Inf can also be used in calculations and to represent certain quantities:

1/0

[1] Inf

1 / Inf

(11 o

Remark. Tt is possible to work with integers in R. To specify that a number is an integer, we
need to type L after the number:

x <- 2L
class(x)

[1] "integer"

However, integers can easily be converted to numeric objects when performing computations.
Hence, it is very likely that one will never need to work with integers.

19

y <- 1 % x
class(y)

[1] "numeric"

Complex

A complex number is specified by adding the suffix i.

x <- -3i
X

[1] 0-3i
class(x)
[1] "complex"

We need to make sure to include a number before i. Otherwise, R will try to look for an
object.

x <- i

Error:
! object 'i' not found

The order of real and complex parts does not matter.

x <- 2 - 1i
X

[1] 2-1i

y <- -1i + 2

[1] 2-1i

We can check if a variable is complex using the is.complex() function:

20

is.complex (x)

[1] TRUE

is.numeric(x)

[1] FALSE

We can also perform calculations with this type of objects:
X +y

(1] 4-2i

R has some built-in functions to transform the type of data. For instance, we could use
as.numeric() to try to transform a complex into a numeric

as.numeric(x)

[1] 2
Note that a warning message is displayed, indicating that R only took the real part.

Character

A character string is specified by using quotation marks (").

x <- "Hello world"
X

[1] "Hello world"

class(x)

[1] "character"

We can use single (') or double (") quotes, but not a mix.

21

x <- "Actuarial"
X

[1] "Actuarial"

y <- 'Mathematics'
y

[1] "Mathematics"
z <- 'Mix"

Error in parse(text = input): <text>:1:6: unexpected INCOMPLETE_STRING
1: z <= 'Mix"

To check whether an object is a character string, we can use the is.character () function.

is.character(x)

[1] TRUE

We can concatenate two character strings by using the paste() function:
paste(x, y)

[1] "Actuarial Mathematics"

Note that by default, paste() puts a space between the two character strings. We can change
this by using the sep argument:

paste(x, y, sep = ".")

[1] "Actuarial.Mathematics"

We can convert numeric variables into character variables by using the as.character()
function.

22

R = 2
as.character (x)

[1] ll2ll

It is also possible to pass from character to numeric.

X <_ "2”
as.numeric(x)

[1] 2

Finally, try the following code:

x <- "Hello"
as.numeric(x)

[1] NA

This will produce a NA (short for Not Applicable). NA is used to represent missing values, or
unknown values, in R.

Logical

We have already mentioned the logical constants TRUE and FALSE, when describing logical
operators. These can also be stored in an object as follows:

x <- TRUE
X

[1] TRUE

class(x)

[1] "logical"

Alternatively, we can use T and F:

23

[1] FALSE

Again, we can check if a variable is of the logical type by using is.logical():
is.logical(y)

[1] TRUE

When converting a logical variable into a numeric variable, we will obtain 1 (TRUE) or 0
(FALSE):

as.numeric (TRUE)
(1] 1
as.numeric (FALSE)
(11 0

On the other hand, we can convert a numeric variable into a logical one using the as.logical ()
function. In such a case, any numeric value different from 0 will be converted to TRUE and only
0 to FALSE:

as.logical(2.3)

[1] TRUE

as.logical(0)

[1] FALSE

When performing computation, R automatically transforms TRUE to 1 and FALSE to 0, which
can be very useful.

A car insurance policy covers any losses above a deductible of 80. Compute the amount the
company pays if a claim for 100 is registered.

24

Solution.

deductible <- 80

claim <- 100

payment <- (claim > deductible) * (claim - deductible)
payment

[1] 20

What if the claim was for 707

deductible <- 80

claim <- 70

payment <- (claim >= deductible) * (claim - deductible)
payment

(11 0

1.4 Vectors

Vectors are made of a set of objects. The c() function can be used to create vectors, and it is
the easiest way to define and store more than one value in R.

x <- c(0, 2, 6, -1, -5, 1)
X

[1] 0 2 6 -1-5 1

We can check if an object is a vector by using the function is.vector():

is.vector(x)

[1] TRUE

In fact, we have been working with vectors (of length one) for quite some time:

25

y <= 2
is.vector(y)

[1] TRUE

The c () function also allows you to give other vectors as inputs; in that case, it will concatenate
the vectors.

x <- c(c(0, 2), c(6, -1), -5, 1)
X

(1] 0 2 6-1-5 1

There are other ways to generate (numeric) vectors. Next, we describe how to use the rep()
and seq() functions to do so. Let us start with the function rep(). The first argument in
rep() is x, which is the vector we want to repeat. The next argument is times, corresponding
to a vector with the number of times we desire to repeat the elements of x. The simplest
example is using x and times as vectors of length one:

rep(1l, 4)
(1] 1111
Note that in the above code, we omitted the name of the argument times, given that it is the

first optional argument. Next, we can give a vector of any length as input in x and times as
vectors of length one:

rep(c(l, 2), 4) # repeats c(1l, 2) four times
[1]1 12121212

If in times we give a vector of length larger than one, this should coincide with the length of
the vector passed on x, and it will repeat each entry of x according to the entries of times.

rep(c(l, 2), c(4, 2)) # repeats 1 four times and 2 two times

(1] 111122

The next optional argument is each, which should be a nonnegative integer. It indicates to
rep() that each entry of x must be repeated the number of times given in each.

26

rep(c(l, 2), each = 3) # repeats 1 three times and 2 three times

(11 111222

Finally, we also have the optional argument length.out, which specifies the length of the
output.

rep(c(l, 2), each = 3, length.out = 5)

[1] 11122

Next, we will use the function seq(from, to, by, length.out) to generate sequences of
numbers. Note that this function has four arguments, and the output will depend on the values
provided for these arguments. For example, if we want to generate a sequence of integers from
10 to 20, we can type:

seq(from = 10, to = 20, by = 1)

(1] 10 11 12 13 14 15 16 17 18 19 20

Recall that if we omit the names of the arguments, R will take them in the order provided. So,
the following code will give the same output as before:

seq(10, 20, 1)
[1] 10 11 12 13 14 15 16 17 18 19 20

As a matter of fact, if we look at the documentation of seq(), we can see that the default
value of by is 1, so we can simply type:

seq(10, 20)

(1] 10 11 12 13 14 15 16 17 18 19 20

Sequences of integers are extensively used in R programming. That is why we have the shortcut
operator : (you may remember this operator) to produce the same result:

27

10:20

[1] 10 11 12 13 14 15 16 17 18 19 20

Let us try now with a different increment:

seq(1, 5, by = 0.1)

[1] 1.01.11.21.31.41.51.6 1.7 1.8
[20] 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7
[39] 4.8 4.9 5.0

1.9
3.8

2.0
3.9

.1 2.
.0 4.

2
1

2.32.42.52.62.7 2.8
4.2 4.34.44.5 4.6 4.7

The fourth argument, length.out, can be used to specify the number of values to generate.
The increment will be adjusted accordingly to obtain precisely the given number.

seq(l, 5, length.out = 10)

[1] 1.000000 1.444444 1.888889 2.333333 2.777778 3.222222 3.666667 4.111111

[9] 4.555556 5.000000

So far, we have only created numeric vectors. However, creating vectors of the other data types

is also possible.

x <- c("stringl", "string2")
X

[1] "stringl" "string2"

x <- c(FALSE, TRUE)
X

[1] FALSE TRUE

x <- c(1 + 2i, 3 - 2i)
X

[1] 1+2i 3-2i

We can also check the data type of a vector:

28

x <= c("stringl", "string2")
class(x)

[1] "character"

is.numeric(x)

[1] FALSE

At this point, you may be wondering what happens when you mix objects. Try it for yourself:

class(c(2.5, "string"))
class(c(TRUE, 10))
class(c("string", FALSE))
class(c(2.5, 1i))

You will see that the assignment hierarchy is given as follows: character > complex > numeric
> logical.

1.4.1 Accessing vector elements
To access and modify elements of a vector, we can employ []. It is important to point out that,
in stark contrast to other programming languages (e.g., C++), where the vector index starts

at 0, in R, the index begins at 1. Hence, if we want to access the first element of a vector, we
need to write the following:

x <- c(0, 2, 6, -1, -5, 1)
x[1]

(11 O

This operator also allows you to change the value of that element:

x[1] <- 10
X

(1] 10 2 6 -1 -5 1

If we try to access an element beyond the last element, we will get NA:

29

x[10]

[1] NA

To obtain the size (or length) of a vector, we can use the function length():
length(x)

(1] 6

Thus, one way to access the last element of a vector is the following;:
x[length(x)]

(1] 1

We may be interested in selecting multiple elements of a vector. There are different ways to do
it, depending on what is required. Consider the vector

x <- c(0, 2, 6, -1, -5, 1)

To access the second and third elements, we can type:

x[c(2, 3)]

[1] 2 6

To obtain the elements from positions 2 to 5, we can run the following:

x[2:5]

(1] 2 6 -1 -5

We can use negative numbers if we require all the vector entries except for certain elements.
For instance, the following code returns the whole vector without the first element:

30

x[-1]

[1] 2 6-1-5 1

For multiple elements:

x[c(-1, -3)]

(1] 2-1-5 1

x[-c(1, 3)] # equivalently

(1] 2-1-5 1

It turns out that we can use logical indexing to subtract data, which is a very powerful tool.
Let us start with a very simple example. Consider the vector

x <- c(0, 2, 5)

If we type

x[c(TRUE, FALSE, TRUE)]

[1] 0 5

we can see that R selects the entries with TRUE values. Now, take again the vector

x <- c(0, 2, 6, -1, -5, 1)

We can use the logical operators to see, for example, which entries are nonnegative:

x >= 0

[1] TRUE TRUE TRUE FALSE FALSE TRUE

Thus, if we want to subtract the nonnegative entries of that vector, we can type:

31

x[x >= 0]

[1] 0261

Alternatively, we can make use of the function which(). This function returns the indices that
give TRUE to a logical object. For example,

which(x >= 0) # These are indices, not the values contained in the vector

[11] 1 2 3 6

Hence, we can subtract the nonnegative entries of that vector as follows:

x[which(x >= 0)]

(1] 0261

If the length of the logical vector is different. R will “recycle” information:

x[c(TRUE, FALSE)]

(1] 0 6 -5

Equivalent to
x[c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE)]

(1] 0 6 -5

There are two other special cases that are worth mentioning. If we put nothing inside [1, we
obtain the original vector

x[]

(1] 0 2 6-1-5 1

If we put 0, then we obtain a vector of size 0, which is represented by numeric(0)

32

x[0]

numeric(0)

1.4.2 Operations with vectors

Now, we will review some operations involving vectors.

Scalars and vectors

Let us start with operations between scalars (vectors of length one) and vectors.

x <- c(0, 2, 6, -1, -5, 1)
X * 2

[1] 0 4 12 -2 -10 2

As we can see, R will return a new vector with entries, the entries of the original vector
multiplied by the given scalar. In the same way, we can make other operations:

x/ 4+ 2

[1] 2.00 2.50 3.50 1.75 0.75 2.25

x"2

[1] 0 436 125 1

27x

[1] 1.00000 4.00000 64.00000 0.50000 0.03125 2.00000

Scalar functions applied to vectors

If we apply a scalar function, such as exp(), abs() (absolute value), round (), etc., to a vector,
R will compute such a function element-wise:

33

exp(x)

[1] 1.000000e+00 7.389056e+00 4.034288e+02 3.678794e-01 6.737947e-03
[6] 2.718282e+00

abs (x)

[1] 026151

Operations among vectors

We can also perform operations among vectors. The operators typically work element-wise.
Let us try first with a sum:

x <- c(0, 2, 6, -1, -5, 1)
y <- C(l, _1’ 21 7, _2; 8)
X + y

(1] 1+ 1 8 6-7 9

We can try other operators:

X*y

(1] 0-212 -7 10 8

Xy

[1] 0.00 0.50 36.00 -1.00 0.04 1.00

If the vectors are of different sizes, R will recycle information.

x <- c(0, 2, 6, -1, -5, 1)
y <- c(1, -1)
X + y

[1] 1 1 7-2-4 0

34

Equivalent to

x <- c(0, 2, 6, -1, -5, 1)
y <-c(1, -1, 1, -1, 1, -1)
Xty

(1] 1 1 7-2-4 0

Finally, note that the * operator performs element-wise multiplication. However, when working
with mathematical vectors one may want to compute the inner product. This can be done with
the %*% operator:

x <- c(0, 2, 6, -1, -5, 1)
y <- c(1, -1, 2, 7, -2, 8)
X Ixhy

[,1]
[1,] 21

Remark. Recall that for two vectors x = (2, ...,x,,) and y = (y4, ..., ¥,,), the inner product
< X,y > is defined as

n
<Xy >= Y 1,y
1=1

Some vector functions

Data will be typically stored inside vectors. In order to analyze such data, we can make use of
different R functions. For instance, Table 1.3 shows some useful functions.

Table 1.3: Some vector functions

min () Minimum value in a vector

max () Maximum value in a vector

length() Number of elements in a vector
sum() Sum of the elements in a vector

mean () Mean of the elements in a vector
median() Median of the elements in a vector
var () Variance of the elements in vector

sd O Standard deviation of the elements in

35

Remark. For given data zq,...,x,,, the mean() and var() functions compute the sample mean
and variance given by

respectively.

We can now compute several quantities of interest with all these functionalities at hand.

Let us assume that the following insurance claims have been reported to an insurance company:

claims <- c(80, 20, 60, 55, 20.5, 100, 70, 89.9, 120)

How many claims were reported?

length(claims)

(11 9

How much is the total amount of claims?

sum(claims)

[1] 615.4

For which amount are the minimum and maximum claim amounts?

min(claims)

[1] 20

max (claims)

[1] 120

What is the average claim amount?

36

mean(claims)

[1] 68.37778

This can also be computer using the sum() and length() functions:

sum(claims) / length(claims)

[1] 68.37778

What is the standard deviation of the claims?

sd(claims)

[1] 33.81489

Again, this can be computed using other functions:

sqrt (sum((claims - mean(claims))~2) / (length(claims) - 1))

[1] 33.81489

Now assume that all these claims have a deductible of 50, and the insurance company pays the
difference between a claim and the deductible if the former is larger. On average, how much
does the company have to pay for the claims above the deductible?

deductible <- 50

claims_to_pay <- claims[claims > deductible]
payment <- claims_to_pay - deductible
payment

(1] 30.0 10.0 5.0 50.0 20.0 39.9 70.0

mean (payment)

[1] 32.12857

37

1.5 Matrices, data frames, and lists

1.5.1 Matrices

Sometimes, we are interested in storing information in a matrix form. The simplest way to
generate a matrix is to use the matrix () function. This function has different arguments (see
the help - 7matrix), so let us see how to use some of these options. The main argument of
matrix () is data, which should be a data vector.

x <- matrix(c(1, 2, 3, 4, 5, 6))
X

[,1]
[1,]
[2,]
(3,]
[4,]
(5,]
(6,]

Ok WN -

Recall that R will execute the default option if no further arguments are passed. In the above
case, it creates a one-column matrix. The next two arguments are nrow and ncol. These are
used to define the dimension of a matrix:

x <- matrix(c(l, 2, 3, 4, 5, 6), nrow = 3, ncol = 2)

X

[,11 [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

y <- matrix(c(1l, 2, 3, 4, 5, 6), nrow = 2, ncol = 3)
y

[,11 [,2]1 [,3]
[1,] 1 3 5
[2,] 2 4 6

38

We can omit the argument names, and R will assign the input to the arguments in the order
they are defined in the function. In this case, nrow first and ncol second (again, see help -
7matrix).

x <- matrix(c(1, 2, 3, 4, 5, 6), 2, 3)
X

[,11 [,2]1 [,3]
[1,] 1 3 5
[2,] 2 4 6

y <- matrix(c(1, 2, 3, 4, 5, 6), 3, 2)
y

(.11 [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

Note that the above matrices are filled by columns (the default). If we want to change this, we
can use the next argument byrow.

x <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 3, ncol = 2, byrow = TRUE)
X

[,11 [,2]

[1,] 1 2
[2,] 3 4
)] 5 6

y <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2, ncol = 3, byrow = TRUE)
y

[,11 [,2]1 [,3]
[1,] 1 2 3
[2,] 4 5 6

In these notes, we will mainly use the default option of filling by columns.

If we only specify one of the arguments, ncol or nrow, R will attempt to find the other
parameter from the length of the data.

39

x <- matrix(c(l, 2, 3, 4, 5, 6), ncol = 2)
X

[,11 [,2]
[1,] 1 4
[2,] 2 5
(3,] 3 6

y <- matrix(c(l, 2, 3, 4, 5, 6), nrow = 2)
y

[,11 [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Finally, if we specified the dimensions of the matrix and provided a vector of length larger than
ncol x nrow (i.e., the number of entries of the matrix), R will cut out the last elements.

x <- matrix(c(l, 2, 3, 4, 5, 6, 7, 8), 3, 2)
x

(.11 [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

The last argument, dimnames, helps us give names to a matrix’s rows and columns.

x <- matrix(c(1, 2, 3, 4, 5, 6), 3, 2,
dimnames = list(c("Rowl", "Row2", "Row3"), c("Columnl", "Column2"))

Columnl Column2
Rowl 1 4
Row2 2 5
Row3 3 6

Alternatively, names can be added (and modified) by using the colnames() and rownames ()
functions. Additionally, these functions can help to keep the code clearer.

40

x <- matrix(c(l, 2, 3, 4, 5, 6), nrow = 3, ncol = 2)
colnames(x) <- c("Columni", "Column2")

rownames (x) <- c("Rowl", "Row2", "Row3")

X

Columnl Column2

Row1l 1 4
Row2 2 5
Row3 3 6

Remark. Sometimes, we will encounter matrices that are defined using data vectors created
with the c() function applied multiple times. For instance,

x <- matrix(c(c(l, 2, 3), c(4, 5, 6)), 3, 2)

X
[,11 [,2]
[1,] 1 4
[2,] 2 5
5] 3 6

The reason is that this “notation” can help to distinguish the different columns of your input,
S0 it is easier to read and identify mistakes. Remember that c(c(1, 2, 3), c(4, 5, 6))
produces the same vector as c(1, 2, 3, 4, 5, 6).

We can verify if an object is a matrix using the is.matrix () function:

x <- matrix(c(l, 2, 3, 4, 5, 6), 3, 2)
is.matrix(x)

[1] TRUE

y <= c(1, 2, 3)
is.matrix(y)

[1] FALSE

Another important function for matrices is dim(). It has two functionalities. The first one is
to tell the dimension of a matrix object.

41

x <- matrix(c(1, 2, 3, 4, 5, 6), 3, 2)
dim(x)

[1] 3 2

If we only require the number of columns or rows, we can use the ncol() and nrow() functions:

nrow(x)

(1] 3

ncol (x)

[1] 2

The second functionality of dim() is transforming vectors into matrices.

x <- c(1, 2, 3, 4, 5, 6)
dim(x) <- c(3, 2)
x

[,11 [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

A matrix can also be obtained by first generating two or more vectors and then combining
them using the cbind () or the rbind () functions. The cbind () function combines the vectors
by making them columns of a new matrix:

x <- 2:5
y <- 9:6
cbind(x, y) # Note that the columns have been named

Xy
[1,] 29
[2,] 38
3,147
(4,1 56

42

On the other hand, the rbind () function makes those vectors rows of a new matrix:

rbind(x, y) # Note that the rows have been named

[,11 [,21 [,3] [,4]
X 2 3 4 5
v 9 8 7 6

We can also create diagonal matrices by using the diag() function.

diag(c(1l, 2, 3, 4))

(.11 [,2]1 [,3] [,4]

[1,] 1 0 0 0
[2,] 0 2 0 0
[3,] 0 0 3 0
(4,] 0 0 0 4

To create an identity matrix, we simply type:

diag(4)

(,11 [,2] [,3] [,4]
[1,] 1t 0 0 0

[2,] 0 1 0 0
(3,] 0 0 1 0
[4,] 0 0 0 1

Accessing matrix elements

To access elements of a matrix, we can use the [] notation. This is done in a similar way as in
vectors, but in this case, we have to specify the rows and columns ([row, column]).

x <- matrix(1:6, 3)
x

(.11 [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

43

x[3, 2]

[1] 6

We can also modify these values:

x[3, 2] <- 8
X

[,11 [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 8

If we want a whole row of the matrix, we leave the second argument blank:

x[2,]

[1] 2 5

Similarly, for columns:

x[, 1]

(11 123

We can select multiple rows (or columns) using the c¢() function:

x[c(1, 3), 1

[,11 [,2]
[1,] 1 4
[2,] 3 8

x[c(1, 3), 2]

[1] 4 8

Negative values can be used to discard certain rows (or columns):

44

x[, -2]

(1] 123

x[-c(1, 3), -2]

[1] 2

Additionally, we can also use logical operators to subtract data. For instance, consider the
following matrix:

x <- matrix(c(c(10, -2, 3), c(8, 0, -5)), 3, 2)
X

(.11 [,2]
[1,] 10 8
[2,] -2 0
[3,] 3 -5

If, for example, we were required to subset the matrix in such a way that we only keep the
rows with values in the first column that are nonnegative, this can be done as follows:

x[x[, 1] >= 0,]

[,1] [,2]
[1,] 10 8
[2,] 3 -5

What about subsetting the matrix in such a way that we only keep rows that have only
nonnegative in both columns:

x[x[, 1] >= 0 & x[, 2] >= 0,]

[1] 10 8

Finally, if our matrix has column or row names, we can use those names to subtract informa-
tion:

45

x <- matrix(c(l, 2, 3, 4, 5, 6), nrow = 3, ncol = 2)
colnames(x) <- c("Columni", "Column2")

rownames (x) <- c("Rowl", "Row2", "Row3")

X

Columnl Column2

Row1l 1 4
Row2 2 5
Row3 3 6

x["Row2", "Columni'"]

[1] 2

x[c("Row2", "Rowl"), "Columnl"]

Row2 Rowl
2 1

Remark. In the last example, note that the output of the last command is a vector with names
for its elements. We can also give names to the entries of a vector by using the names ()
function. For instance,

x <- c(1,2)
names (x) <- c("namel", "name2")
x

namel name2
1 2

However, this functionality is not used very often.

Operations with matrices

Matrices behave pretty much in the same way as vectors when dealing with scalars and functions
of scalars:

46

x <- matrix(1:6, 3)
X

(.11 [,2]

[1,] 1 4
[2,] 2 5
»J 3 6

x~2 # Each element to the power 2

[,11 [,2]
[1,] 1 16
[2,] 4 25

exp(x) # Exp applied element-wise

[,1] [,2]
[1,] 2.718282 54.59815
[2,] 7.389056 148.41316
[3,]1 20.085537 403.42879

When working with matrices of the same dimension, the computations will be performed
element-wise:

x <- matrix(1:6, 3)
X

[,1]1 [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

y <- matrix(6:1, 3)
y

[,11 [,2]
[1,] 6 3
[2,] 5 2
[3,] 4 1

47

Xty

[,11 [,2]

[1,] 7 7

[2,] 7 7

)] 7 7
Xy

[,1]1 [,2]

[1,] 1 64
[2,1] 32 25
[3,1] 81 6

Remark. We can also perform calculations between vectors and matrices. However, we need to
be aware that R will recycle information to do so. For instance,

x <- matrix(1:6, 3)
y <= ¢(0.5, 2)
X *y

[,1]1 [,2]
[1,] 0.5 8.0
[2,] 4.0 2.5
[3,] 1.5 12.0

Equivalently
y <- matrix(rep(c(0.5, 2), 3), 3)
y

(.11 [,2]
[1,] 0.5 2.0
[(2,] 2.0 0.5
3,]

48

[,11 [,2]
[1,] 0.5 8.0
[2,] 4.0 2.5
[3,] 1.5 12.0

There are other important operations among matrices. Let us review some of them. To

perform matrix multiplication, we need to use the %*% operator (remember * is an element-wise
product):

x <- matrix(1:4, 2)
X

[,11 [,2]
[1,] 1 3
[2,] 2 4

y <- matrix(4:1, 2)
y

[,1]1 [,2]
[1,] 4 2
[2,] 3 1

X Ixhy

[,11 [,2]
[1,] 13 5
[2,] 20 8

The transpose of a matrix can be computed with the t() function:

x <- matrix(1:6, 3)

X

[,1]1 [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

49

t(x)

[,11 [,2]1 [,3]
[1,] 1 2 3
[2,] 4 5 6

The inverse of a matrix can be obtained with the solve() function (we recommend checking
the help for more details ?solve()):

x <- matrix(1:4, 2)
solve(x)

[,11 [,2]
[1,] -2 1.5
[2,] 1 -0.5

x %*% solve(x) # To check the result

[,1]1 [,2]
[1,] 1 0
[2,] 0 1

We may also be interested in performing operations column- or row-wise. For instance, we might
want to compute the mean by row (or by column). To do so, we can use the function apply ().
The main arguments of apply () are X (the matrix), MARGIN (1 for rows, 2 for columns, or c(1,

2) for both), and FUN (the function to apply). For instance, let us compute the mean by rows
and columns:

X <- matrix(1:6, 3)

X
[,1]1 [,2]
[1,] 1 4
[2,] 2 5
,] 3 6

apply(x, 1, mean)

[1] 2.5 3.5 4.5

50

apply(x, 2, mean)

[1] 2 5

Remark. Matrices can be seen as 2-dimensional arrays. We can create n-dimensional arrays by
using the array() function.

x <- array(c(1l:4, 11:14, 21:24), dim = c(2, 2, 3)) # We used dim for the dimensions
x

[,11 [,2]
[1,] 1 3
[2,] 2 4

[,11 [,2]
[1,] 11 13
[2,] 12 14

[,1]1 [,2]
[1,] 21 23
[2,] 22 24

Access to an array’s elements is done the same way as for matrices, using [].

x[1, ,]

[,11 [,21 [,3]
[1,] 1 11 21
[2,] 3 13 23

x[, 1, 1]

51

[,11 [,2]1 [,3]
[1,] 1 11 21
[2,] 2 12 22

x[, , 1]

[,1]1 [,2]
[1,] 1 3
[2,] 2 4

However, array objects do not have the same versatility as matrices.

1.5.2 Data frames

Matrices can store only one data type. However, we may want to save more than one type of
data in a matrix-type format — for instance, students’ names and their grades. Data frames
allow us to do precisely that. To create a data frame, we use the data.frame() function.

names <- c("studentl", "student2", "student3", "student4")
grades <- c(90, 95, 85, 70)

students <- data.frame(names, grades)

students

names grades

1 studentl 90
2 student2 95
3 student3 85
4 studentéd 70

Note that data.frame() has named the object’s columns. We can check if an R object is a
data frame with the is.data.frame() function:

is.data.frame(students)

[1] TRUE

Data frames allow access to their data via [] in the same way as matrices:

02

students[1,] # Information of the first student

names grades
1 studentl 90

students[, 2] # Grades

[1] 90 95 85 70

students[2, 2] # Grade of second student

[1] 95

students[students[, 2] > 80,] # Students with grades above 80

names grades

1 studentil 90
2 student?2 95
3 student3 85

Data frames can also use the $ operator to access data in a specific column. We simply type
the name of the data frame object followed by the $ operator and the column’s name. For
instance,

students$grades

[1] 90 95 85 70

Moreover, to access a specific element of that column, we can type:

students$grades[1]

[1] 90

Alternatively, we can use the name of the column inside [] to access its data:

53

students[, "grades"]

[1] 90 95 85 70

The next thing we may want to do with a data frame is to add more information. This can be
done with the cbind () function. For instance,

age <- c(20, 21, 21, 19)

students <- cbind(students, age)
students

names grades age

1 studentl 90 20
2 student?2 95 21
3 student3 85 21
4 student4d 70 19

Alternatively, we can use the $ operator:

students$email <- c("stl1@liv.co", "st2@liv.co", "st3@liv.co", "st4@liv.co")
students
names grades age email
1 studentl 90 20 stil@liv.co
2 student2 95 21 st2@liv.co
3 student3 85 21 st3@liv.co
4 student4d 70 19 st4@liv.co
Or even []:

students[, 5] <- c(1, 2, 3, 4)

The names of the columns can be accessed (and changed) using the function names():

names (students)

[1] ||namesll llgradesll llagell n emailll ||V5ll

o4

names (students) [5] <- "id"

students

names grades age email id
1 studentil 90 20 sti1@liv.co 1
2 student?2 95 21 st2@liv.co 2
3 student3 85 21 st3@liv.co 3
4 student4d 70 19 st4@liv.co 4
1.5.3 Lists

A list enables the storage of a variety of objects into a single one. In contrast to data frames,
lists can contain different data types of different lengths. Lists can be generated in R using the
function list ().

month <- c("Jan", "Feb", "Mar")

value <- c(1.21, 1.245, 1.402)

type <- "monthly-interest-rate"

rate <- list(Month = month, Value = value, Type = type)
rate

$Month
[1] llJan" ||Febll IIMarll

$Value
[1] 1.210 1.245 1.402

$Type
[1] "monthly-interest-rate"

The structure of a list object can also be displayed (in a more compact format) using str():

str(rate)

List of 3

$ Month: chr [1:3] "Jan" "Feb" "Mar"
$ Value: num [1:3] 1.21 1.25 1.4

$ Type : chr "monthly-interest-rate"

95

As is the case with data frames, we can use $ to access information:

rate$Value

[1] 1.210 1.245 1.402

rate$Month[1]

[1] "Jan"

We can also use []. However, the notation, in this case, is slightly different:

rate[[1]] # First element of a list, in this case, the months

[1] “Jan" “Feb" "Mar"

rate[[2]][2] # Second value

[1] 1.245

We can add more data to a list in different ways. First, using the $ operator:

rate$Year <- 2021
str(rate)

List of 4

$ Month: chr [1:3] "Jan" "Feb" "Mar"
$ Value: num [1:3] 1.21 1.25 1.4

$ Type : chr "monthly-interest-rate"
$ Year : num 2021

Second, using []:

rate[[5]] <- c("UK")
str(rate)

56

List of 5
$ Month: chr [1:3] "Jan" "Feb" "Mar"
$ Value: num [1:3] 1.21 1.25 1.4
$ Type : chr "monthly-interest-rate"
$ Year : num 2021
$: chr "UK"

Names can be handled in the same way as with data frames.

names (rate) [6] <- "Country"
str(rate)

List of 5
$ Month : chr [1:3] "Jan" "Feb" "Mar"
$ Value : num [1:3] 1.21 1.25 1.4
$ Type : chr "monthly-interest-rate"
$ Year : num 2021
$ Country: chr "UK"

1.6 Functions

So far, we have been only using built-in R functions. However, R also allows us to create our
own functions. The basic syntax to define a new R function is shown below:

function_name <- function(argl, arg2, ...) {
statement (s)

3

Let us try a very simple example first: compute the area of a circle given its radius. An
implementation would be the following:

area_circle<- function(radius) {

pi * radius”2

}

We can now call our function:

area_circle(2)

o7

[1] 12.56637

We now consider a slightly more complicated example: Program the density function of an
exponentially distributed random variable X with mean A~!, A > 0. Recall that this density
function is given by

f(x) = Xexp(=Az), x>0.

We write X ~ Exp()\).

We now require two inputs for our function: the parameter A and the point where we evaluate
the density.

den_exponential<- function(x, lambda) {

lambda * exp(-lambda * x)
}

den_exponential(1l, 0.5)

[1] 0.3032653

When defining a function, we can give default values to the arguments. For example, let us
make the default option of our exponential density the standard exponential, i.e., A = 1:

den_exponential <- function(x, lambda = 1) {
lambda * exp(-lambda * x)
+

Thus, if we do not provide the function with the second parameter, R will use 1.

den_exponential (1)

[1] 0.3678794

We now give some important considerations when working with functions:

¢ You can return the result of a function using the return() function. In our functions
above, we did not make use of this function, and the reason is that, by default, R returns
the result of the last evaluated expression. However, return() can be used for early
returns. For instance, the function below terminates after the first line and returns 1,
ignoring the second line.

o8

dummy_function <- function(x) {
return(1)
X *x 2

}

dummy _function(10)

(1] 1

e« We can create objects inside a function, and these will be erased after executing the
function.

dummy_function <- function(x) {
z <- 10
X * z

}

dummy_function(10)

[1] 100
z
Error:
! object 'z' not found
¢ R will look for objects in the global environment if they are not defined inside a function.

2 <= 2

dummy_function <- function(x) {
X * z

}

dummy_function(10)

[1] 20

z # Keeps the value of 2

(11 2

However, if we create an object inside a function with the same name as an object in the global
environment, the function will use the object defined inside the function’s body.

59

z <- 2

dummy_function <- function(x) {
z <- b5
X * z

}

dummy _function(10)

[1] 50

z # Keeps the value of 2

[1] 2

¢ R does not alter objects given as input of a function. Instead, it creates copies.
x <- C(21 6’ 1: 9)
dummy_function <- function(x) {

X <- sort(x)

X

}

dummy_function (x)

(11 1269

(11 2619

1.7 Packages

R comes with a preloaded selection of functions. However, contributors can make their functions
available via an R package. In fact, you can make your function available in the form of an R
package. The general way to install a package in CRAN is as follows:

install.packages("package_name")

Let us try this by installing the derivmkts package:

60

install.packages("derivmkts")

We can install multiple packages using c().

install.packages(c("ggplot2", "devtools"))

Once a package is installed, we need to call it using the 1ibrary () command in order to access
all its functionalities.

library(package_name)

For instance,

library(derivmkts)

R packages in CRAN are updated regularly with new functions, fix bugs, performance im-
provements, etc. To update an R package, we can use the update.packages() function. The
syntax is similar to install.packages (), for instance,

update.packages(c("ggplot2", "devtools"))

If a package in CRAN is not updated regularly, it can potentially be removed from CRAN.
This means that sometimes when a package has not been updated for a while, we will not be
able to install it using install.packages(). Let us try, for instance, with the CASdatasets
package:

install.packages("CASdatasets")

However, the source code of an older version may still be available, and we can use that to
install the package using the command

install.packages(path_to_file, repos = NULL, type = "source")

where path_to_file is the location and name of the file. Following the example of CASdatasets
package, it is available to download at http://cas.ugam.ca. Try to install this package from
source (note that you need to install the packages xts, sp, and zoo first). As previously
mentioned, packages in CRAN are updated regularly. This means that their functionality may
change over time by adding, modifying, or even erasing functions. Fortunately, CRAN keeps
an archive of previous versions of each package. Hence, the previous method can also be used
to install an older version of a package.

61

http://cas.uqam.ca

Remark. Submitting a package to CRAN requires passing certain tests, documenting properly,
and constantly updating. That is why some developers make their code available in other
places, for instance, GitHub. We can install a package from almost anywhere using the
devtools package. For example, to install a package in GitHub, we can use the function
install_github().

A powerful characteristic of R is that it allows writing code in other computer languages,
such as C++. However, this also means that some packages will require compilation for their
installation. Thus, we need to set up our computer to do so. For Windows computers, we
need to download and install Rtools, which can be found at the following link: https://cran.r-
project.org/bin/windows/Rtools/. Rtools is versioned to match the major.minor version of R.
For example, Rtools45 is used with R 4.5.x, Rtools44 with R 4.4.x, and Rtools43 with R
4.3.x. Download the version compatible with your installed R version. For Mac computers, we
have two options: Download and install Xcode from the Apple store or install Xcode command
line by running the following in the terminal

sudo xcode-select --install

In addition, some packages are written using Fortran, and this will require installing a Fortran
compiler for macOS. The instructions can be found here: https://mac.r-project.org/tools/.
However, installing Xcode or Xcode command line will work fine for the packages used in the
present notes.

Test that your setup is working by installing the actuar package:

install.packages("actuar")

Finally, if after loading a package, we require to detach it, we can use the detach() function:

detach("package:ggplot2", unload = TRUE)

We can also remove packages from your library with the remove.packages() function:

remove.packages ("ggplot2")

Remark. Installing, loading, updating, detaching, and erasing packages can also be done in the
Packages tab of RStudio.

62

https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/bin/windows/Rtools/
https://mac.r-project.org/tools/

1.8 Control Statements

1.8.1 Conditional statements

Conditional statements evaluate if a condition is TRUE and perform an action depending on the
result. We start with the if statement. Its structure is as follows:

if (condition) {
action(s) in case of TRUE

}

Below, there is a very simple example:

claim <- 50

deductible <- 40

if (claim > deductible) {
print("Pay claim")

}

[1] "Pay claim"

In this case, the claim is larger (>) than our deductible, so our condition is TRUE. Thus, R
will execute the code contained inside {}. In this case, print “Pay claim.”

Remark. If our code after the if statement is only one line, {} can be committed. For instance,
the above code could have been written as follows:

if (claim > deductible)
print("Pay claim")

[1] "Pay claim"

Sometimes, we want to perform an action in case the condition is FALSE. In such a case, we
can use the else statement.

if (condition) {

action(s) in case of TRUE
} else {

action(s) in case of FALSE

}

63

Here there is a simple example:

claim <- 30
deductible <- 40
if (claim > deductible) {
print ("Pay claim")
} else {
print("Do not pay claim")
}

[1] "Do not pay claim"

Remark. When if/else statements are simple, one can also make use of the ifelse() function:

ifelse(claim > deductible, "Pay claim", "Do not pay claim")

[1] "Do not pay claim"

An advantage of the ifelse() function is that it can evaluate vectors.

X <- C(ly 2’ 3’ 4)
ifelse(x %% 2 == 0, "even", "odd")

[1] llodd" “eVen" ||0dd" "eVen"

What if we want to evaluate several if/else conditions? We can use if else statements to do
SO.

if (conditionl) {
action(s) in case conditionl TRUE
} else if (condition2) {
action(s) in case condition2 TRUE
} else {
action(s) in case conditionl and condition2 FALSE

¥

64

x <= 70

if (x < 50) {
print ("low number")

} else if (50 <= x & x <= 80) {
print ("medium number")

} else {
print("high number")

[1] "medium number"

1.8.2 Loop statements

Loops statements are used to repeat code. R has two loop statements: for and while.

while statements

A while statement repeats lines of code while a certain condition is TRUE, and it stops when it
is FALSE. The general structure of a while loop is the following:

while (condition) {
action(s) while the condition is TRUE

}

We now give a simple example.
Example 1.2. Compute the cumulative sum of integers from 1 to 20 using a while loop.

Solution.

sum_int <- 0O

i<-1

while (i <= 20) {
sum_int <- sum_int + i
i<-13i+1

}

sum_int

[1] 210

65

for statements

When we know exactly how many times we need to repeat a loop, we can use a for loop. The
format of this statement is given below:

for (index in vector) {
action(s)

}

The most common way to use a for loop is in conjunction with the : operator. For instance,
if we want to solve Example 1.2 with a for loop, this can be done as follows:

sum_int <- 0
for (i in 1:20) {
sum_int <- sum_int + i # value of i changes automatically

}

sum_int

[1] 210

However, we can use a for loop with any other vector.

capital <- 1
yr_rates <- c(0.05, 0.03, 0.02)
for (r in yr_rates) {

capital <- capital * (1 + r)
}
capital

[1] 1.10313

1.9 Vectorized operations

R has been thoughtfully optimized for several operations with vector (and matrix) objects. This
is commonly called “vectorization” and allows you to write concise, efficient, and easy-to-read
code. For instance, let us consider the element-wise sum of two vectors. This can be done as
follows:

66

x <- 1:10
y <= 11:20
X+y

[1] 12 14 16 18 20 22 24 26 28 30

However, the same calculation can be done with a for loop (without vectorization):

z <- numeric(length(x))
for (i in 1:length(x)) {
z[i] <- x[i] + y[i]

}

z

[1] 12 14 16 18 20 22 24 26 28 30

We can see that the first code is simpler to read and easier to implement (less typing). Well, it
turns out that it is also more efficient. To see this, we need to measure the time each code
takes to perform the same calculation, and we can use the microbenchmark package to do it.
First, we need to install the package.

install.packages("microbenchmark")

To use the functionalities of microbenchmark, we need to convert our previous code into
functions:

sum_vect <- function(x, y) {
Xty

3

sum_no_vect <- function(x, y) {
z <- numeric(length(x))
for (i in 1:length(x)) {
z[i] <- x[i] + y[il
}

z

We now use microbenchmark () to measure the running times of the above functions:

67

library(microbenchmark)

x <= 1:10

y <= 11:20

microbenchmark(sum_vect(x, y), sum_no_vect(x, y), times = 10)

Unit: nanoseconds
expr min 1lq mean median uq max neval cld
sum_vect(x, y) 123 164 25280.6 164 410 249813 10 a
sum_no_vect(x, y) 656 656 111905.4 697 779 1112289 10 a

We can see that the performance of the vectorized version is, on average, around 5 times (this
number may vary from computer to computer) faster than the implementation using a for
loop. In conclusion, we should aim to do as many vectorized operations as possible in our
code.

1.10 Reading and writing data

In practice, data is commonly provided in the form of an external file. This can be a plain text
file (.txt), a comma-separated values file (.csv), an MS Excel file, etc. Hence, it is necessary
that we learn how to read and write data in different file formats.

1.10.1 Working directory

One concept that is fundamental for reading and writing data is the “working directory.” This
is the directory where R will first look for files. To see our current working directory, we can
use the getwd () function.

getwd ()

If we want to change it to a different directory, this can be done with the setwd() function.

setwd("directory")

However, this can also be done using the RStudio interface. For instance, to see our current
working directory, we can go to the Files tab, click More, and then select Go to Working
Directory. Suppose we want to set up a new working directory. In that case, this can be done
by going to the Files tab, looking for the directory that we want as the working directory,
clicking More, and then selecting Set as Working Directory. Alternatively, we can go to the
Session menu, Set Working Directory, and then select one of the options available.

68

1.10.2 Writing data

To store data in a file, we can use the write.table() and write.csv() functions. Typically,
the object to be written would be a data frame or a matrix. Hence, let us consider the following
data frame:

names <- c("studentl", "student2", "student3", "student4")
grades <- c(90, 95, 85, 70)

students <- data.frame(names, grades)

students

names grades

1 studentl 90
2 student2 95
3 student3 85
4 studentéd 70

Now, we can use write.table() to write the data in a file. For instance, to generate a .txt
file, we can use the following:

write.table(students, file = "students.txt")

This would produce a file that looks like this :

"names" '"grades"

"1" "studentl" 90
"2" "student2" 95
"3" "student3" 85
"4" "student4" 70

By default, write.table() separates the data with a space and includes the column and row
names. We can adjust the above code to make a comma-separated values file (.csv) that does
not include the row names.

write.table(students, file = "students.csv", sep = ",", row.names = FALSE)

Now the file looks like this:

69

"names", "grades"
"student1",90
"student2",95
"student3",85
"student4",70

Since CSV files are easier to read for most programs (including MS Excel), we have a specific
function to write this type of file: write.csv().

write.csv(students, file = "students.csv", row.names = FALSE)

The above code generates exactly the same CSV file as before.

1.10.3 Reading data

Reading data in the form of text can be done with the read.table() and read.csv()
functions.

For example, if we now want to read the CSV file produced before, we can do it as follows:

the_students <- read.table("students.csv", header = TRUE, sep = ",")
Our file is comma delimited and with headers
the_students

names grades

1 studentl 90
2 student2 95
3 student3 85
4 student4 70

With the above, the data is now inside a data frame. Alternatively, we could have used the
read.csv() function:

the_students <- read.csv("students.csv", header = TRUE)

Remark.

¢ Importing data can also be done with RStudio. Simply click Import Dataset in the tab
Environment.

e To import data from Excel, perhaps the easier method is to export the worksheet that
contains your data to a CSV file and then read it in R as described above. However, you
can also use an R package such as readx1, which provides the function read_excel() to
do so.

70

2 R for Statistical Inference

2.1 Descriptive statistics

When working with real-life data, one of the first things we may want to do is get a general
understanding of the data. For this purpose, we can use some descriptive statics and plots
available in R.

R comes with some databases that can be accessed using the data() function. Moreover, we
can see the list of data sets available by typing data(). For example, we can find the iris
data set (use 7iris for a complete description of the data). Although not an insurance or
financial data set, we will use iris in this section since it is readily available, and the tools
presented here do not depend on the source of the data.

First, we need to load the data into our working space using data():

data(iris)

Now, the iris should appear in the Environment tab. Note that iris is a data frame, which
is one of the most common ways of presenting data in R.

str(iris)

'data.frame': 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1

$ Petal.Length: num 1.4 1.4 1.3 1.51.41.71.41.51.41.5 ...

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1111111111

Remark. Some R packages include data sets. For instance, install and load the package
insuranceData. Here you will find the dataCar data set.

The first thing that we may want to do is to compute some measures of central tendency and
variability. Let us focus for now on the column Sepal.Lenght. Regarding measures of central
tendency, these refer to measures such as the mean and the median. We already know that the
function mean() can be used to compute the sample mean.

71

mean (iris$Sepal.Length)

[1] 5.843333

We can also compute the sample median using the median() function. Recall that the sample
median refers to the value in the middle of the observations.

median(iris$Sepal.Length)

[1] 5.8
Let us now move to some measures of variability, which help us understand how spread the

data is. First, we can look at the minimum and maximum values, which can be obtained using
the functions min() and max() receptively.

min(iris$Sepal.Length)

[1] 4.3

max (iris$Sepal.Length)

[1] 7.9

Alternatively, we can use the range() function to compute both minimum and maximum
simultaneously.

range (iris$Sepal.Length)
(1] 4.3 7.9

Next, we can look at the variance, which measures how the data values are dispersed around
the mean. This can be computed with the var () function:

var (iris$Sepal.Length)

[1] 0.6856935

A related measure is the standard deviation, which is simply the square root of the variance.
To compute it, we can use sd():

72

sd(iris$Sepal.Length)

[1] 0.8280661

Finally, we may be interested in computing the sample quantiles of our data. The R command
to do so is quantile():

quantile(iris$Sepal.Length)

0% 25% 50% 75% 100%
4.3 5.1 5.8 6.4 7.9

Note that by default, R computes the quantiles of 0% (min), 25%, 50% (median), 75%, and
100% (max). However, we can change this with the argument probs:

quantile(iris$Sepal.Length, probs = seq(0.1, 0.9, by = 0.1))

10% 20% 30% 40% 50% 60% 70% 80% 90%
4.80 5.00 5.27 5.60 5.80 6.10 6.30 6.52 6.90

Although all the above measures can be computed separately, the summary () function provides
an easier way to compute several of them at once:

summary (iris$Sepal.Length)

Min. 1st Qu. Median Mean 3rd Qu. Max.
4.300 5.100 5.800 5.843 6.400 7.900

Moreover, if our data set has several columns, summary() can compute all these measures for
all columns at the same time:

summary (iris)

73

Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100

1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300

Median :5.800 Median :3.000 Median :4.350 Median :1.300

Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199

3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800

Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
Species

setosa :50

versicolor:50
virginica :50

Note that our data set has a column called Species, indicating the flower species. Although
the summary function above already provides us with the list of species (three species), we can
also use the unique () function to check how many species we have:

unique (iris$Species)

[1] setosa versicolor virginica
Levels: setosa versicolor virginica

Now, we can use Species to give more insides into our data set. For example, we may be
interested in computing the mean of Sepal.Lenght by species. For that, we can use the
function tapply () as follows:

tapply(iris$Sepal.Length, iris$Species, mean)

setosa versicolor virginica
5.006 5.936 6.588

Or we can use tapply() in conjunction with summary().

tapply (iris$Sepal.Length, iris$Species, summary)

$setosa
Min. 1st Qu. Median Mean 3rd Qu. Max.
4.300 4.800 5.000 5.006 5.200 5.800

74

$versicolor
Min. 1st Qu. Median Mean 3rd Qu. Max.
4.900 5.600 5.900 5.936 6.300 7.000

$virginica
Min. 1st Qu. Median Mean 3rd Qu. Max.
4.900 6.225 6.500 6.588 6.900 7.900

We may also be interested in seeing if there is a relationship among the different columns of our
data set. For that purpose, we can start, for instance, by computing their correlation, a measure
of how a pair of variables are linearly related. Recall that for two vectors x = (x4, ..., z,,) and
y = (yy,-..,¥,) the sample correlation coefficient is given by

Cov(x,y) — ni - zn: (‘rz _:E)(yz _g) 7

i=1 sty

where s, and s, are the sample standard deviations of x and y, respectively. In R, the sample
correlation is computed using the cor () function. For example,

cor(iris$Sepal.Length, iris$Sepal.Width)
[1] -0.1175698

If we have several (numeric) columns, we can compute all correlations at once:

cor(iris[, -5])

Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411

Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259
Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654
Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000

Remark. The cor () computes, by default, the Person’s correlation coefficient described above.
However, we can use the method argument to calculate Kendall’s tau and Spearman’s rho, two
measures that assess how well the relationship between two variables can be described using a
monotonic function. We will review these two other measures later on.

75

2.1.1 Visual tools

We now present some R tools that can be employed to visualize data. More specifically, we will
see how to create histograms, box plots, and scatter plots.

Histograms

To create a histogram, we can use the hist () function. For instance, to draw a histogram for
Sepal.Length, we type:

hist(iris$Sepal.Length)

Histogram of iris$Sepal.Length

25

Frequency
15
|

| | | | |
4 5 6 7 8

iris$Sepal.Length

We can customize our plot further using the different arguments of hist () (see ?hist):

hist(iris$Sepal.Length,
breaks = 15, # Number of cells in the histogram
main = "Histogram of Sepal Lenght", # Main tittle
xlab = "Sepal Lenght", # Text on the x-axis
freq = FALSE, # Probability density
xlim = c(4, 8), # Range for the x-axis
col = "blue" # Color to fill the bars

76

Histogram of Sepal Lenght

S
.. ©
h—4
= i
c
O o
o o T

e _

o

I I
6 7 8

I
(6)]

Sepal Lenght

R also allows to compute kernel density estimates via the density() function.

plot(density(iris$Sepal.Length))

density(x = iris$Sepal.Length)

Density
0.0 0.1 0.2 03 04

N =150 Bandwidth =0.2736

We can combine our two previous plots using 1ines () as follows:

hist(iris$Sepal.Length,
breaks = 15, # Number of cells in the histogram
main = "Histogram of Sepal Lenght", # Main tittle
xlab = "Sepal Lenght", # Text on the x-axis

freq = FALSE, # Probability density
x1lim c(4, 8), # Range for the x-axis
col = "blue" # Color to fill the bars

)

lines(density(iris$Sepal.Length),
lwd = 3, # Line width

col = "red" # Color of the line

)
Histogram of Sepal Lenght

>

D

c

[}

a)

4 5 6 7 8
Sepal Lenght
Box plots

To produce box plots, R uses the boxplot () function. Let us try an example with the iris
data set:

boxplot (iris$Sepal.Length)

45 55 65 75

78

We can create box plots for the different (numeric) columns of iris at the same time:

boxplot(iris[, -51)

0 — p—
© — ' :
< - R T e
] _

N —o '
o — T

| |

Sepal.Length Petal.Length

Let us now customize the above plot:

boxplot(iris[, -5],
main = "Box plot - Iris data set",
names = c(
"Sepal length", "Sepal width",
"Petal length", "Petal width"
), # Change names of x axis

col = "green"
)
Box plot — Iris data set
0 - p—
o == i
< - - -8
—_— -
N —O '
o —
| | |
Sepal length Petal length Petal width

79

Scatter plots

Scatter plots can help us to visualize the relationship between the different data columns. We
can use the plot () function to create a scatter plot. For instance, below, we plot Sepal Length
against Petal Length:

plot(iris$Sepal.Length, iris$Petal.Length,
panel.first = grid(8, 8), # Adds a 8x8 grid
cex = 1.2, # Size of the dots
col = "blue",
xlab = "Sepal length",
ylab "Petal length",
main = "Iris - Sepal length and petal length"

Iris — Sepal length and petal length

~ =
_ 0g°0 ©

i 28
00!8@8'@8’@O©§

] Oo

| se0g880g8e08s ©
[[[

Petal length
1 2 3 456 7
|

| | | | |
4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Sepal length

Finally, for data with several (numeric) columns, we can plot them all at once:

plot(iris[, -5], # We remove the column without numeric values
col = "blue"

)

80

Sepal.Length

20 35

Petal.Width

05 20

L
45 55 65 75 1 3 5 7

2.2 Probability distributions

R comes with several parametric probability distributions that can help us to describe our
data. Every distribution in R has four functions, which can be called by using the root name
of the distribution (e.g., exp) preceded by one of the following letters:

e d: The probability density function (pdf).

e p: The cumulative distribution function (cdf).

e q: Quantile.

e r: Random generator for the specified distribution.

For instance, the exponential distribution has the four functions: dexp(), pexp(), qexp() and
rexp().

Table 2.1 shows the continuous distributions, and Table 2.2 the discrete distributions available
by default in R. Note, however, that these two lists are far from comprehensive since there
are several other distributions not contained there. Fortunately, other distributions may be
available in different packages. For example, an implementation for the Pareto distribution can
be found in the actuar R package.

Table 2.1: Continuous distributions

Distribution Root name

Beta beta

81

Table 2.1: Continuous distributions

Distribution Root name
Cauchy cauchy
Chi-2 chisq
Exponential exp
Fisher F f
Gamma gamma
Logistic logis
Lognormal Inorm
Normal norm
Student t t
Uniform unif
Weibull weibull

Table 2.2: Discrete distributions

Distribution Root name
Binomial binom
Geometric geom
Hypergeometric hyper
Negative Binomial nbinom
Poisson pois

Remark. When using these R built-in functions, we must be careful and check the parametric
form implemented for these distributions since they may differ from the ones we are familiar
with. For instance, in R, the pdf of the Gamma distribution has two parametrizations (see
help - ?pgamma). The first one is

1
oI («)

where o« > 0 and ¢ > 0 and is accessible by using the arguments shape («) and scale (o).
The second parametrization is

a—1_—z/c

€)

fz) =

x>0,

where a > 0 and A > 0, which correspond to the use of the arguments shape («) and rate (\).
However, note that both representations are equivalent. Indeed, take o = 1/A.

82

We now look at some examples of how to use these functions, and we will use the normal
distribution to do so. Recall that a random variable X is said to be normal distributed with
mean p € R and standard deviation o > 0, if its density function is given by

flz) = ! eXp(—W), reR.

oV 2m 202

We write X ~ N(u,0?).

In R, this density can be evaluated using the dnorm() function. For instance,

dnorm(1) # mu = 0, sigma = 1

[1] 0.2419707

dnorm(1l, 1, 2) # mu = 1, sigma = 2

[1] 0.1994711

We will now plot this density function for different combinations of parameters. The usual
way to plot a function in R is first generate a sequence of numbers, then evaluate the desired
function at the generated sequence, and finally use plot ().

sq <- seq(-5, 5, by = 0.01)

plot(sq, dnorm(sq), type = "1", ylim = c(0, 0.85), ylab = "f(x)", xlab = "x")
lines(sq, dnorm(sq, 0, 0.5), col = "red")

lines(sq, dnorm(sq, 0, 2), col = "blue")

lines(sq, dnorm(sq, 1, 1), col = "green")

lines(sq, dnorm(sq, -1, 1), col = "orange")

legend("topright",
leg = pasteO("'mu = ", c(0, 0, O, 1, -1), ", sigma = ", c(1, 0.5, 2, 1, 1)),
1ty = 1,
col = c("black", "red", "blue", "green", "orange")

)

83

— mu=0,sigma=1
—— mu =0, sigma=0.5
mu =0, sigma =2
mu=1,sigma=1
A mu=-1, sigma=1

f(x)
0.4

Next, we consider the distribution function of X ~ N(u,0?). Recall that this is given by

F(x)—[P(ng)—/m = exp<_(y—ﬂ>2)dy.

o OV 2T 202

To evaluate this function in R, we can use pnorm(). For example, if we want to find P(X < 1.8)
for X ~ N(0,1), we simply type:

pnorm(1.8)
[1] 0.9640697

Note that pnorm() has an optional argument lower.tail. By default lower.tail takes
the value TRUE, indicating that pnorm() will compute P(X < x). However, we can compute
P(X >z) =1—P(X <z) by using lower.tail = FALSE. For instance,

1 - pnorm(1.8)

[1] 0.03593032

pnorm(1.8, lower.tail = FALSE)

[1] 0.03593032

We can simulate random values following a N (u,0?) distribution via the rnorm() function.
For example,

84

rnorm(10)

[1] 0.01874617 -0.18425254 -1.37133055 -0.59916772 0.29454513 0.38979430
[7] -1.20807618 -0.36367602 -1.62667268 -0.25647839

Note that every time you run rnorm(), it will generate a different set of values:

rnorm(10)

[1] 1.10177950 0.75578151 -0.23823356 0.98744470 0.74139013 0.08934727
[7] -0.95494386 -0.19515038 0.92552126 0.48297852

However, sometimes it is convenient to generate the same random sequence at will. This
can allow us, for example, to replicate a study. To do this, we need to give R an initial seed
to generate the random numbers, which is done via the set.seed() function. For example,
consider the following code

set.seed (1)
rnorm(10)

[1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078 -0.8204684
[7] 0.4874291 0.7383247 0.5757814 -0.3053884

Then, if we run the code above again, we will get exactly the same sequence of values:

set.seed (1)
rnorm(10)

[1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078 -0.8204684
[7] 0.4874291 0.7383247 0.5757814 -0.3053884

A visual way to evaluate if certain data follows a specific distribution is to compare the
histogram generated by the data and the density function of the distribution. Let us look at a
simple example: First, we generate a random sample following a N(0, 1) distribution.

set.seed (1)
x <- rnorm(1000)

85

Now, if the data would really follow a N(0,1) distribution (which, in this case, it does by
construction), the histogram of the data should be similar to the density of a N (0, 1) distribution.
The following plot shows precisely this:

hist(x, freq = F, main = "Histogram vs density")

sq <- seq(-5, 5, by = 0.01)
lines(sq, dnorm(sq), type = "1", col = "red")

Histogram vs density

#
o] /\
b —]
2 o
Lo O
(@)
) N
o

X

Finally, we will look at the function to compute the quantiles of a distribution. Recall that for
a random variable X with distribution function F its quantile function F* is given by

F(p)=inf{z:p < F(2)}, pel0,1].
If the distribution function is continuous and strictly monotonic, then F (p) satisfies that
F(F=(p)) =p.

In other words, it corresponds to the inverse of F.

Now, consider X ~ N(1,2?) and suppose that we want to find x such that P(X < z) = 0.95.
This can be done with the gnorm() function:

x <- gnorm(0.95, 1, 2)
X

[1]1 4.289707

86

pnorm(x, 1, 2) # Check

[1] 0.95

An alternative visual way of evaluating if our data comes from a certain distribution is to plot
the sample quantiles against the theoretical quantiles of the distribution to check. This is called
a QQ-plot. If the data comes from that specific distribution, then we should observe that the
points form (approximately) an identity line. Let us look at an example:

set.seed(1)
X <= rnorm(1000, 1, 2)
p <- seq(0.01, 0.99, by = 0.01)
the_quantile <- gnorm(p, 1, 2)
sam_quantile <- quantile(x, p)
plot(the_quantile, sam_quantile,
main = "QQ plot",
xlab = "Theoretical quantiles",
ylab = "Sample quantiles"
)
abline(0, 1, col = "blue") # Identity

QQ plot

(7]
Q<
)

S

T

O
QL o

o

E

©
(9p]

q-

Theoretical quantiles

2.2.1 Tranformations

Several distributions are obtained via transformations. For instance, a lognormal distributed
random variable can be obtained by exponentiation of a normal distributed random variable.

87

Here, we will illustrate how to use the previous implementations to work with transformations
of random variables.

First, let us recall some results. Let Y be a continuous random variable with density and
distribution functions fy-and Fy, respectively. Now, consider a strictly increasing transformation
g(+), and define X = g(Y'). Then, the distribution function F'y of X is given by

Fy(z) =P(X <2) =P(g(Y) <2) =P(Y <g7'(2)) = Fylg '(z)).

From the expression above, it follows that the density function fy of X is given by

d

Fx(@) = Folg (@) (g7 @)).

Now, let us consider an explicit example: the lognormal distribution. Recall that a lognormal
distributed random variable with parameters p and o2 is obtained via the transformation

X =exp(Y),

where Y ~ N(p,0?). We write X ~ LN (u,0?). Although already implemented in R under the
root name lnorm, we can use this distribution to illustrate how to work with transformations
and, at the same time, verify our computations. Note that in this case ¢g(y) = exp(y), y € R,
and g~ !(z) = log(z), = > 0.

We can now compute the distribution function Fy () of X ~ LN (u,0?) at x, by using pnorm()
evaluated at g~ 1(x) = log(x). For example, for X ~ LN(1,22), P(X < 3) can be computed as
follows:
user_plnorm <- function(x, mu, sigma) {

pnorm(log(x), mu, sigma)

}
user_plnorm(3, 1, 2)

[1] 0.5196623

plnorm(3, 1, 2) # Check

[1] 0.5196623

Now for the density evaluation, we need - (¢g~!(z)) = 1/z. Thus, the density evaluation at
x =3 for X ~ LN(1,22) can be computed as:

88

user_dlnorm <- function(x, mu, sigma) {
dnorm(log(x), mu, sigma) / x
}

user_dlnorm(3, 1, 2)

[1] 0.06640961

dlnorm(3, 1, 2) # Check

[1] 0.06640961

In this case, since our transformation is strictly monotonic, we can compute the quantiles
easily.

user_qglnorm <- function(p, mu, sigma) {
exp(qnorm(p, mu, sigma))

}
user_qglnorm(0.95, 1, 2)

[1] 72.94511

glnorm(0.95, 1, 2) # Check

[1] 72.94511

Simulation can also be performed using the relationship X = exp(Y):

user_rlnorm <- function(n, mu, sigma) {
exp(rnorm(n, mu, sigma))

}
set.seed (1)
user_rlnorm(10, 1, 2)

[1] 0.7765396 3.9246872 0.5110656 66.0598801 5.2541358 0.5267987
[7] 7.2055971 11.9013211 8.5982845 1.4758340

In this very particular case, we can check that our simulation is correct by using rlnorm():

89

set.seed(1)
rlnorm(10, 1, 2)

[1] 0.7765396 3.9246872 0.5110656 66.0598801 5.2541358 0.5267987
[7] 7.2055971 11.9013211 8.5982845 1.4758340

2.2.2 Law of large numbers and central limit theorem

We now recall two important results in probability theory and illustrate them using R, namely
the Law of Large Numbers and the Central Limit Theorem. We start with the Law of Large
Numbers:

Theorem 2.1. Let X, X,, ... be a sequence of i.i.d. random variables such that E[X,] = p < oc.
Then, for any € >0 -
lim P(]X,, —pu[=€) =0,

n—oo

where X,, = n~! 2?21 X, denotes the sample mean. In other words, as the sample size n

increases, the probability that the sample mean X, is different from the population mean
converges to zero.

We now illustrate this result via a simulation:

n <- 1000

plot (cumsum(rnorm(n)) / 1:n,
xlab = "Sample size",
ylab = "Sample mean",
col = "darkgray"

)

abline(0, 0, col = "blue")

90

L
—
C
8 o]
—
e
L
£
]
0w o
o

I I I I I I
0 200 400 600 800 1000

Sample size

In the figure above, we can observe that as the sample size increases, the sample mean gets
closer to the population mean (zero). Next, we recall the Central Limit Theorem:

Theorem 2.2. Let X, X, ... be a sequence of i.i.d. random variables with a finite expected
value E[X;] = p < oo and variance Var(X,) = 0? < 0o. Now, let Z,, be the standardized mean
given by -
X —
Z, = — E
o/v/n

Then, for n sufficiently large,
Z

n

~ N(0,1).

Or equivalently, _
X, ~ N(u, 0'2/”))

In other words, for sufficiently large n, the sample mean Xn is close to being normal distributed
with mean p and variance o2 /n.

Let us exemplify this result via a simulation study. The idea is as follows: consider a sample of
size n from an exponential distributed random variable with mean 1/X. If we were to observe
several samples of size n from this distribution, let’s say p samples, and compute ZI,,j) for each
sample j = 1,..., p, then for n large enough ZII]I, 7 =1,...,p, should be approximately a sample
from a standard normal distributed random variable. We could then check if Zq(lj), j=1..,p
is truly normal distributed via, e.g., a QQ-plot. Let us try this, with n = 10, p = 500 and

A=0.5:

n <- 10 # Sample size

p <- 500 # Replications of the experiment

lambda <- 0.5

sim_exp <- matrix(rexp(n * p, lambda), p, n) # Simulations in matrix form

91

samp_mean <- apply(sim_exp, 1, mean) # Sample mean for each replication

mu <- 1 / lambda # Population mean

sigma2 <- 1 / lambda"2 # Population variance

std_mean <- (samp_mean - mu) / (sqrt(sigma2 / n)) # Standardized mean (Z_n)
qqnorm(std_mean, main = "Normal QQ plot - n = 10") # QQ-plot with standard normal
abline(0, 1, col = "blue")

Normal QQ plot —n =10

] (SO R
Q@
g N
©
> — —
(@4
Q@ ©
o
% —
0] <|\'_

Theoretical Quantiles

In the figure above, we observe that Z,, is not standard normal distributed (yet). However, if
we now consider n = 1000, the conclusion changes (see figure below).

Normal QQ plot — n =1000

(92]
(%)
9 N
1=
© —
>
o o
e
Q —
5
» N

Theoretical Quantiles

92

2.3 Parametric inference

In the last section, we presented some distributions in R that can be used to model our data.
However, so far, we have not covered how to fit these models to given data, which is essential
for their application in insurance and finance. Therefore, this section aims to present some
estimation methods available.

2.3.1 Maximum likelihood estimation

Let X = (X4,...,X,,) be a random sample such that X, are i.i.d. random variables with
common distribution function F(-;6), where 6 = (0,,...,0,) € © C R%. Here, © is known as
the parameter space. Given an observed data sample x = (x4, ..., z,,) from X, the likelihood
function L is defined as the joint density of X (as a function of) evaluated at x, that is,

L(0;x) = fy(x;0) = U f(x;;0).

The mazimum likelihood estimator (MLE) is defined as the value of § that maximizes the
likelihood function, that is,

~

0 = argmax,_ L(0;x) = argmax,_ H flz;;0).
i=1

In practice, it is often more convenient to work with the loglikelihood function I, which is
obtained by taking log of the likelihood function, i.e.,

1(0:x) = log(L(0;x)) = Y _log (f(x;:0)) -

Since log(-) is an increasing continuous function, maximizing the loglikelihood is equivalent to
maximizing the likelihood. In other words,

n
0 = argmax,_,l(¢;x) = argmax,_g Z log(f(z;;0)) .
i=1
Lets us now give some examples of how to implement loglikelihood functions in R. We
start by considering the exponential distribution. First, we simulate a sample following this
distribution:

set.seed (1)

lambda <- 1.5
x_exp <- rexp(1000, lambda)

93

The following implementation computes the loglikelihood, assuming exponential distributed
observations, for different parameters:

loglik_exp <- function(x, lambda) {
sum(log(dexp(x, lambda)))
}

Given that our data originally comes from an exponential distribution with A = 1.5, we expect
that values close to 1.5 return larger values.

loglik_exp(x_exp, 0.5)

[1] -1036.915

loglik_exp(x_exp, 1)

[1] -687.5351

Moreover, we can plot the loglikelihood as a function of A. To do so, we need to modify our
loglikelihood implementation above to work with vector inputs for the parameter. Otherwise,
we will obtain only one incorrect evaluation:

loglik_exp(x_exp, c(0.5, 1))

[1] -865.5976

Note that the above is in fact is computing

loglik_exp(x_exp[2 * (1:500) - 1], 0.5) + loglik_exp(x_exp[2 * (1:500)]1, 1)

[1] -865.5976

due to the recycling of information that R performs. One possible way to modify the function
to work with vectors is the following:

94

loglik_exp <- function(x, lambda) {
11 <- rep(0, length(lambda))
for (i in 1:length(lambda)) {
11[i] <- sum(log(dexp(x, lambdal[i])))
}
11

With this new implementation, we obtain:

loglik_exp(x_exp, c(0.5, 1))

[1] -1036.9147 -687.5351

Now, we can generate our plot.

lambda_sq <- seq(0.01, 4, by = 0.01)
plot(lambda_sq, loglik_exp(x_exp, lambda_sq),
main = "Loglikelihood",
ylab = "l(lambda; x)",
xlab = "Lambda",

type=“1"
)
abline(v = 1.5, col = "red")

Loglikelihood

. T
X O
g &
o |
o)
E —
5
= O
= &

O_.

N

Lambda

95

The figure above shows that the loglikelihood is maximized around the original value A = 1.5
(as expected).

Remark. The process of making a scalar function work with vectors is sometimes called:
vectorization of a scalar function. There are other ways to solve the same problem, and here we
present two more. The first one is to use the sapply () function. For instance, let us consider
our initial implementation of the loglikelihood:

loglik_exp <- function(x, lambda) {

sum(log(dexp(x, lambda)))
}

We can now evaluate this function in a vector using sapply () as follows:

sapply(c(0.5, 1), loglik_exp, x = x_exp)

[1] -1036.9147 -687.5351

A second way to vectorize arguments of a function is to use the Vectorize () function, which
creates a new function with vectorized arguments. The main arguments of this function are
FUN, which is the function we need to vectorize, and vectorize.args, which is a vector with
the arguments’ names that we need to vectorize. Now, let us apply this function to our initial
loglikelihood implementation:

loglik_exp_v <- Vectorize(loglik_exp, "lambda")
loglik_exp_v(x_exp, c(0.5, 1))

[1] -1036.9147 -687.5351

Let us now consider a second example, where we have two parameters, namely a normal
distribution. First, we simulate a sample:

set.seed (1)
mu <- 1

sigma <- 2
x_norm <- rnorm(1000, mu, sigma)

Next, we implement the loglikelihood:

96

loglik_norm <- function(x, mu, sigma) {
sum(log(dnorm(x, mu, sigma)))

}

Let us test our function:

loglik_norm(x_norm, 0.5, 1)

(1] -3172.521

loglik_norm(x_norm, 0.5, 1.5)

[1] -2325.996

loglik_norm(x_norm, 0.8, 1)

[1] -3074.51

loglik_norm(x_norm, 0.8, 1.5)

[1] -2282.435

loglik norm(x_norm, 2.5, 2.5)

[1] -2363.257

Again, we can see that we obtain larger values when evaluating the function close to the real
parameters p = 1 and o = 2. As in the example of the exponential distribution, we need to
modify the function above to work with vectors for plotting purposes.

loglik_norm <- function(x, mu, sigma) {
11 <- rep(0, length(mu))
for (i in 1:length(mu)) {
11[i] <- sum(log(dnorm(x, muli], sigmalil)))

b
11

We can now perform computations for vector arguments:

97

loglik_norm(x_norm, c(1,2), c(2, 2))

[1] -2147.143 -2277.967

With this implementation at hand, we can now create a surface plot for the loglikelihood. To
that end, we need to create a grid of evaluation points and evaluate our loglikelihood at the
generated points. This can be done as follows using the outer () function:

mu_sq <- seq(0.75, 1.5, by = 0.05)
sigma_sq <- seq(0.75, 2.5, by = 0.05)
11_eval <- outer(mu_sq, sigma_sq, loglik_norm, x = x_norm) # Evaluates the LogLik at all poii
persp(mu_sq, sigma_sq, 11_eval,
phi = 20, # Angle for visualization
theta = 45, # Angle for visualization

ticktype = "detailed", # Adds values to the axis
xlab = "mu",

ylab = "sigma",

zlab = nn’

main = "Loglikelihood"

Loglikelihood

Remark. As in the exponential case, we have two alternative methods of evaluating the
loglikelihood when passing vector inputs. The first one is to use the mapply() function,
which is a multivariate version of sapply (). Let us consider our initial implementation of the
loglikelihood:

98

loglik_norm <- function(x, mu, sigma) {
sum(log(dnorm(x, mu, sigma)))

}

Then, we can evaluate this function in vector parameters using mapply () as follows:

mapply(loglik_norm, mu = c(1,2), sigma = c(2, 2), MoreArgs = list(x = x_norm))

[1] -2147.143 -2277.967

The second way to vectorize the arguments of our loglikelihood function is to use Vectorize ()
as follows:

loglik_norm_v <- Vectorize(loglik_norm, c("mu", "sigma"))
loglik_norm_v(x_norm, c(1,2), c(2, 2))

[1] -2147.143 -2277.967

Maximization

Our next step to finding the MLE is to maximize the loglikelihood with respect to the parameters.
In R, this can be done by using optim(), which is a function that performs minimization.
Nevertheless, remember that maximizing a function is equivalent to minimizing the negative of
that function. Thus, we need to work with the negative loglikelihood in order to use optim().
Let us exemplify the above with the exponential distribution.

We will consider the previous exponentially distributed sample (x_exp). We start by imple-
menting the negative loglikelihood:

nloglik_exp <- function(x, lambda) {
-sum(log(dexp(x, lambda)))
}

With this implementation at hand, we can find the MLE of X\ using optim().

mle_exp <- optim(
par = 1, # Initial value for the parameter to be optimized over
fn = nloglik_exp, # Function to be minimized
x = x_exp # Further parameters

)

mle_exp$par # MLE - note that it is close to the original parameter

99

[1] 1.454297

mle_exp$value # Negative loglikelihood

[1] 625.3576

In this particular case, we can verify our result using the fact that the MLE for the exponential
distribution has an explicit solution given by

A=1/7

n -

With our simulated sample, we then obtain

lambda_hat <- 1 / mean(x_exp)
lambda_hat

[1] 1.454471

which is very close to our solution with optim(). The difference is because the first solution is
solved using numerical methods, while the second one is a closed-form expression.

Let us now try the same procedure with our normal distributed sample. In this case, we require
to estimate two parameters. The first step is to implement the negative loglikelihood.

nloglik_norm <- function(x, par) {
-sum(log(dnorm(x, par[1], par[2])))
}

Note that in the above function, we passed both parameters as a single argument. We need to
do it this way to be able to use optim().

mle_norm <- optim(
par = c(0.5, 1.5), # Initial values for the parameters to be optimized over
fn = nloglik_norm,
X = X_norm

)

mle_norm$par # MLE - note that it is close to the original parameter

[1] 0.9779522 2.0690633

100

mle_norm$value # Negative loglikelihood

[1] 2145.906

Again, we can verify our results using that for the normal distribution, the MLEs of u and o
are explicit and given by
1/2
(xi - xn)2> .

fi=Z,,

Q
I
/N
S

L
L[

Thus, for our simulated sample, we obtain

mu_hat <- mean(x_norm)
sigma_hat <- sqrt(sum((x_norm - mean(x_norm))~2) / length(x_norm))
mu_hat

[1] 0.9767037

sigma_hat

[1] 2.068797

Note that our results using optim() are very close to the ones obtained via the closed-form
formulas.

Properties of the MLE
We now review some properties of maximum likelihood estimators. For illustration purposes,

we state the results when the parameter space is a subset of R. However, the results can be
extended to higher dimensions.

101

Consistency

Theorem 2.3. Let X, X,,... be a sequence of i.i.d. random variables with common density
function f(-;0). Then, under mild conditions, for any e > 0

lim P(|6,, — 6] > ¢) =0,

n—oo

where én is the maximum likelihood estimator of 6 based on a sample of size n. In other
words, as the sample size n increases, the probability that the MLE 0,, is different from the true
parameter 6 converges to zero.

Let us now illustrate this result with a simulation.

lambda <- 1.5

set.seed(1)

x_10 <- rexp(10, rate = lambda)

x_100 <- rexp(100, rate = lambda)

x_1000 <- rexp(1000, rate = lambda)

mle_exp_10 <- suppressWarnings(optim(par = 1, fn = nloglik_exp, x = x_10)$par)
mle_exp_100 <- suppressWarnings(optim(par = 1, fn = nloglik_exp, x = x_100)$par)
mle_exp_1000 <- suppressWarnings(optim(par = 1, fn = nloglik_exp, x = x_1000)$par)
mle_exp_10

[1] 1.780078

mle_exp_100

[1] 1.419922

mle_exp_1000

[1] 1.480859

We can see that as the sample size increases, the MLE gets closer to the true parameter.

102

Efficiency

Theorem 2.4. Let Xy, Xy, ... be a sequence of i.i.d. random variables with common density
function f(-;0). Now, let 0,, be the maximum likelihood estimator of 6 based on a sample of
size n. Then, under mild conditions, for n sufficiently large,

V(@ —0) ~ N(0,(7(9)), (2.1)

where J(0) is the Fisher information

2
96) = E |~ gz oxt7Cx:0)|

We now give an equivalent representation for Equation 2.1. First, we define the information of
the sample 7, (0) as
2

7,.(6) = nJ(6) = E, [_d@z

log(L(Q;X))] .
Next, we define the standard error se as

se=1+/1/7,(0)
Then, Equation 2.1 can be rewritten as

~

wnsg 9 . N(0,1). (2.2)

In practice, 7,,(0) can be approximated by the observed information J n(én) given by

N 2

- d
Tn(0,) = 402 log(L(6;x)) fezén :

Consequently, the standard error can be approximated as se = 1/1/7,,(

Dy

Tl)'

In R, we can compute J n(én) by using the argument hessian in optim(). For example,

mle_exp <- optim(
par = 1, # Initial value for the parameter to be optimized over
fn = nloglik_exp, # Function to be minimized
hessian = TRUE, # Computes the Hessian
x = x_exp # Further parameters
)
obs_inf_exp <- mle_exp$hessian
obs_inf_exp

103

[,1]
[1,] 472.8183

Then, we can approximate the standard error as well.

se_exp <- sqrt(l / obs_inf_exp)
se_exp

[,1]
[1,] 0.04598888

Now, we can use the asymptotic normality of the MLE to compute confidence intervals. More
specifically, an (1 — «) confidence interval for 6 is given by

~

en + q(l—a/2) se,
where q;_/2) is the (1 —a/2)-quantile of the standard normal distribution.

Further properties of the MLE

The following theorem provides further properties of the MLE

Theorem 2.5.

a) Let 0 be the MLE of 0. Then, given a function g : R* — R, the MLE of g(0) is g(@) This
1s called the invariance property of the MLE.

b) If Y = h(X), where h is invertible in the domain of X, then the MLE based on'Y is the
same as the MLE based on X.

R packages for MLE
There are several R packages that include functions to perform maximum likelihood estimation.
For instance, EstimationTools, fitdistrplus, and MASS, among others. Here, we illustrate

the use of the fitdistrplus package.

library(fitdistrplus)

104

The fitdistrplus package comes with the fitdist () function to perform MLE (and other
estimation methods). The distribution is specified with the argument distr, which should be
the root name of a distribution (e.g., gamma). To access all the functionalities of fitdistrplus,
the density (d), distribution function (p), and quantiles (q) must be available for the given
distribution (see help for details ?fitdist). However, specifying the density is enough if we
only require to find the MLE when considering uncensored observations (although a Warning
message will be displayed). Moreover, note that the argument start can be omitted for some
distributions (the list can be found in the help); otherwise, it has to be specified. Let us give a
couple of examples.

First, the MLE for our exponentially distributed sample:

fit_exp <- fitdist(x_exp, distr = "exp")
summary (fit_exp)

Fitting of the distribution ' exp ' by maximum likelihood
Parameters :
estimate Std. Error
rate 1.454471 0.04599439
Loglikelihood: -625.3576 AIC: 1252.715 BIC: 1257.623

Secondly, the MLE for our normally distributed sample:

fit_norm <- fitdist(x_norm, distr = "norm")
summary (fit_norm)

Fitting of the distribution ' norm ' by maximum likelihood
Parameters :

estimate Std. Error
mean 0.9767037 0.06542109
sd 2.0687965 0.04625965
Loglikelihood: -2145.906 AIC: 4295.811 BIC: 4305.627
Correlation matrix:

mean sd

mean 1.000000e+00 -3.359931e-10
sd -3.359931e-10 1.000000e+00

Note that we obtain (approximately) the same values as our implementations above.

Remark. Another useful implementation in fitdistrplus is that it can generate plots to
evaluate the quality of the fit by simply using the plot () function. For example,

105

plot(fit_exp)

. . 0
Empirical and theoretical dens. 2 Q-Q plot
> 8
3 =
$ o ﬂm T o
A o I | 1 | L | 1 |
0 1 2 3 4 g 0O 1 2 3 4 5
LLl
Data Theoretical quantiles
3
Empirical and theoretical CDFs % P-P plot
3
a o
(@) o o
© 3 T T 1 g o© R
o 1 2 3 4 = 00 02 04 0.6 08 1.0
S
Data w Theoretical probabilities

Finally, we provide an example with a user-defined distribution, namely, the Gumbel distribution
with location parameter pu € R and scale parameter 3 > 0. Recall that the density and
distribution functions of this model are given by

f(z) = exp <—exp <—<x;“>>> exp (—(“’;”) ; z €R,

o) = o (e (~52)) | e

An implementation of these functions is the following:

dgumbel <- function(x, mu, beta) {

exp((mu - x) / beta) * exp(-exp((mu - x) / beta)) / beta
}
dgumbel (1, 1, 2)

[1] 0.1839397

pgumbel <- function(q, mu, beta) {
exp(-exp((mu - q) / beta))

}

pgumbel (1, 1, 2)

106

[1] 0.3678794

With these implementations at hand, we can now call fitdist () to perform MLE. For example,
we consider the groundbeef data set in the fitdistrplus package:

data(groundbeef)

Then, we fit a Gumbel distribution to the serving sizes:

fit_gum <- fitdist(groundbeef$serving,
distr = "gumbel",
start = list(mu = 1, beta

2)
)

summary (fit_gum)

Fitting of the distribution ' gumbel ' by maximum likelihood
Parameters :

estimate Std. Error
mu 56.97836 1.924293
beta 29.08311 1.431895
Loglikelihood: -1255.717 AIC: 2515.435 BIC: 2522.509
Correlation matrix:

mu beta

mu 1.0000000 0.3180634
beta 0.3180634 1.0000000

2.3.2 Adequacy of the fit

We now focus on assessing the adequacy of a fit either via graphical methods or numerical
methods. To illustrate the methods, we consider the Danish fire insurance data set (danishuni)
available in fitdistrplus. More specifically, we will consider the losses above 1 million danish
kroner and subtract 1 million to all data points to bring the data to the origin, that is,

data(danishuni)

danish_loss <- danishuni$Loss[danishuni$Loss > 1] - 1
summary (danish_loss)

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.893e-03 3.309e-01 7.818e-01 2.397e+00 1.973e+00 2.623e+02

107

We will consider the following potential models for the transformed data:

a
b
c
d

Gamma - gamma

Pareto - pareto (available in the actuar R package)
Burr - burr (available in the actuar R package)
Mixture of Gamma and Pareto - To be implemented

)
)
)
)

The idea is to select the model that “best” describes the data from the above list.

First, we need to load the actuar package to get access to the implementations of the Pareto
and Burr distributions.

library(actuar)

We can now perform MLE for the Gamma, Pareto and Burr distributions

fit_gamma <- fitdist(danish_loss,

distr = "gamma"
)
fit_pareto <- fitdist(danish_loss,
distr = "pareto",
start = list(shape = 1, scale = 1)
)
fit _burr <- fitdist(danish loss,
distr = "burr",
start = list(shapel = 1, shape2 = 1, rate = 1)
)

To perform MLE of the mixture of Gamma and Pareto, we need to program its density and
distribution functions. This is easily done using the corresponding functions for the gamma and
pareto distributions:

dmgp <- function(x, shapeg, rateg, shapep, scalep, prob) {

prob * dgamma(x, shapeg, rateg) + (1 - prob) * dpareto(x, shapep, scalep)
}
pmgp <- function(q, shapeg, rateg, shapep, scalep, prob) {

prob * pgamma(q, shapeg, rateg) + (1 - prob) * ppareto(q, shapep, scalep)
}
dmgp(1, 1, 1, 1, 1, 0.5)

[1] 0.3089397

108

pmgp(1, 1, 1, 1, 1, 0.5)

[1] 0.5660603

We can now find the MLE for the above model:

fit_mgp <- fitdist(danish_loss,
distr = "mgp",
start = list(shapeg = 1, rateg = 1, shapep = 1, scalep = 1, prob = 0.5),
lower = O # Avoid negative values

Remark. Although numerical maximization of mixture models can be done directly, aka by
“brute force,” there are more efficient ways to perform MLE of these models. For example, by
using the expectation-maximization (EM) algorithm.

Now, let us look at the results of our fits:

summary (fit_gamma)

Fitting of the distribution ' gamma ' by maximum likelihood
Parameters :

estimate Std. Error
shape 0.5507522 0.013972943
rate 0.2297385 0.008855394
Loglikelihood: -3712.443 AIC: 7428.887 BIC: 7440.239
Correlation matrix:

shape rate

shape 1.0000000 0.6581788
rate 0.6581788 1.0000000

summary (fit_pareto)

Fitting of the distribution ' pareto ' by maximum likelihood
Parameters :

estimate Std. Error
shape 1.654915 0.0906339
scale 1.566186 0.1265238
Loglikelihood: -3339.701 AIC: 6683.403 BIC: 6694.755
Correlation matrix:

109

shape scale
shape 1.0000000 0.9194348
scale 0.9194348 1.0000000

summary (fit_burr)

Fitting of the distribution ' burr ' by maximum likelihood
Parameters :
estimate Std. Error
shapel 1.2313513 0.10490815
shape2 1.1342848 0.03618015

rate 0.9718628 0.11269533
Loglikelihood: -3331.881 AIC: 6669.761 BIC: 6686.789
Correlation matrix:
shapel shape2 rate
shapel 1.0000000 -0.8282684 -0.9640989

shape2 -0.8282684 1.0000000 0.8095964
rate -0.9640989 0.8095964 1.0000000

summary (fit_mgp)

Fitting of the distribution ' mgp ' by maximum likelihood

Parameters :

estimate Std. Error
shapeg 5.55996787 0.06578963
rateg 8.36650601 0.15612674
shapep 1.54727413 0.10384525
scalep 1.50831245 0.20695471
prob 0.09602818 0.06997576
Loglikelihood: -3327.25 AIC: 6664.501 BIC: 6692.881
Correlation matrix:

shapeg rateg shapep scalep prob

shapeg 1.0000000 0.7376455 0.3311384 0.1897823 -0.5239495
rateg 0.7376455 1.0000000 0.6427566 0.6817440 -0.5513225
shapep 0.3311384 0.6427566 1.0000000 0.8223254 -0.6582521
scalep 0.1897823 0.6817440 0.8223254 1.0000000 -0.2838069
prob -0.5239495 -0.5513225 -0.6582521 -0.2838069 1.0000000

The first number we can look at to select a model is the likelihood. Remember that we aim to
maximize the likelihood; hence we would prefer a model with the highest likelihood possible.
In our case, the mixture model has the highest likelihood. However, we also need to take into

110

account the complexity of a model. Let us explain the last point in detail: In general, statistical
models with more parameters allow for more flexibility, and thus, we can expect improvements
in the fits as the number of parameters increases. However, having too many parameters can
result in a fit that only describes the data at hand and fails to fit additional data or predict
future observations. This is known as overfitting. On the other hand, underfitting occurs
when a model cannot adequately capture the underlying structure of the data. Information
criteria, such as the Akaike information criterion (AIC) and the Bayesian information criterion
(BIC), deal with the problem of overfitting by introducing a penalty term for the number of
parameters in the model. More specifically, if we let L be the maximum value of the likelihood
function, d the number of parameters in our model, and n the sample size, the AIC and BIC
are computed as

AIC = 2d —2log(L)
BIC = dlog(n) — 2log(L)

Given a set of candidate models for our data, the preferred model would be the one with the
minimum AIC (or BIC) value. In our current example, these numbers indicate that the mixture
model is still preferred.

We can also use visual tools to assess the quality of the fit. Let us start by plotting the
histogram of the data

hist(danish_loss, freq = F, breaks = 30)

Histogram of danish_loss

. _
o —
o
= —
2 <
] o
0O o
o
Q | —
o | | [[[|
0 50 100 150 200 250
danish_loss

Given that our data has losses that are quite large, in this case, it is more convenient to plot
the logarithm of the data

111

hist(log(danish_loss), freq = F, breaks = 30)

Histogram of log(danish_loss)

o
00__
o __
)
= —]
(2]
o
& < -
n o
S _ T
o | | | | | T |

log(danish_loss)

We now compare the histogram with the fitted distributions. Note, however, that we need to
adapt our density functions accordingly to compare with the logarithm of the data by using
the change of variable theorem.

sq <- seq(-7, 7, by = 0.01)
hist(log(danish_loss), freq = F, breaks = 30)
lines(sq,
dgamma (exp(sq), fit_gamma$estimate[1], fit_gamma$estimate[2]) * exp(sq),
col = "red"
)
lines(sq,
dpareto(exp(sq), fit_pareto$estimate[l], fit_pareto$estimate[2]) * exp(sq),
col = "blue"
)
lines(sq,
dburr (
exp(sq), fit_burr$estimate[1], fit_burr$estimate[2],
fit_burr$estimate[3]
) * exp(sq),
col = "green"
)

lines(
sq,

112

dmgp (
exp(sq), fit_mgp$estimate[1], fit_mgp$estimate[2],
fit_mgp$estimate[3], fit_mgpPestimate[4], fit_mgp$estimate[5]

) * exp(sq)
)
Histogram of log(danish_loss)
S %5
S /§
>
2 - /1
(%2}
S 9 - 4
() o
o
QS
o | | | | | | |
-6 -4 -2 0 2 4 6

log(danish_loss)

We observe that the density mixture distribution is closer to the histogram. Finally, we can
also create QQ-plots to evaluate the fit. Notice that to create the QQ-plot of the mixture
distribution, we need to implement a function to compute its quantiles. An implementation is
the following:

gmgp <- function(p, shapeg, rateg, shapep, scalep, prob) {
L2 <- function(q, p) {
(p - pmgp(q, shapeg, rateg, shapep, scalep, prob)) 2
}
sapply(p, function(p) optimize(L2, c(0, 1073), p = p)$minimum)
}
gqmgp(0.5, 1, 1, 1, 1, 0.5)

[1] 0.8064592

We can now create the corresponding QQ-plots:

113

p <- 5eq(0.001, 0.999, by = 0.001)
danish_quant <- quantile(danish_loss, p)

par (mfrow = c(2, 2))
plot(qgamma(p, fit_gamma$estimate[1l], fit_gamma$estimate[2]),
danish_quant,
main = "QQ plot - Gamma",
x1lab "Quantiles fitted Gamma",
ylab = "Empirical quantiles"

)
abline(0, 1, col = "blue")

plot(gpareto(p, fit_pareto$estimate[1], fit_pareto$estimate[2]),
danish_quant,
main = "QQ plot - Pareto",
xlab = "Quantiles fitted Pareto",
ylab

"Empirical quantiles"

)
abline(0, 1, col = "blue")

plot(gburr(p, fit_burr$estimate[1], fit_burr$estimate[2], fit_burr$estimate[3]),
danish_quant,
main = "QQ plot - Burr",

xlab = "Quantiles fitted Burr",
ylab = "Empirical quantiles"

)

abline(0, 1, col = "blue")

plot(
qmgp (

p, fit_mgp$estimate[1], fit_mgp$estimate[2], fit_mgpPestimate[3],
fit_mgp$estimate[4], fit_mgp$estimate[5]

U

danish_quant,

main = "QQ plot - Gamma-Pareto mixture",

xlab = "Quantiles fitted Gamma-Pareto mixture",
ylab = "Empirical quantiles"

)
abline(0, 1, col = "blue")

114

" "
2 QQ plot - Gamma 2 QQ plot — Pareto
g g
> o > =
— 0 O —_
g © g © I B
g 0 5 10 15 20 25 g 0O 20 40 60 80 100
L L

Quantiles fitted Gamma Quantiles fitted Pareto
0 0 .
2 QQ plot — Burr 2 QQ plot - Gamma-Pareto mixture
g g
> U| >
— (o) —
g © | | g © T T T 1
g 0 50 100 g 0 20 60 100
L L

Quantiles fitted Burr Quantiles fitted Gamma—Pareto mixture

One of the difficulties of this data set is the large values, which make it challenging to find a
model that adequately models the body and tail simultaneously. However, the problem can be
split. On the one hand, one can find a model for the body of the distribution and, on the other,
a model for the tail of the distribution by, for example, using Extreme value theory statistics.
In fact, this data set has been analyzed extensively using Extreme Value Theory techniques.

2.3.3 Other estimation methods

Although MLE is the most commonly used estimation method, we now review some alternatives,
namely the methods of moments, quantile-matching, and maximum goodness-of-fit. Note that
all of these methods are available in the fitdistrplus R package.

Method of moments

Let X,...,X,, be ii.d. random variables with common distribution function F(-;#), where
0= (0y,...,0,) € © CRL Assuming that the moments up to order d of X ~ F(-;0) exist, we

set
pe(0) =E[X*] =pp, k=1,..,d.

In particular, this means that given y, ..., u; we have d nonlinear equations with d unknown
@’s. Therefore, we can find 6 from the raw moments of X, assuming that a unique solution
exists, which is often the case. In practice, we can use the empirical raw moments fi;, given
by

1
Ky n;xz’) 3

115

Then, the moment matching estimator 0 of 0 is the solution to

,U/k:(e):/j/\k, k:]_,,d

Sometimes it is more convenient to base the estimation on central moments. Let
m(0) =E[X] and m,(0) =E[(X —E[X])], k=2,..,d,

and

N _ N 1 & _
m, =, and mk:—g (v, —z,)F, k=2,.,d.
n 4

Then, we can solve for # in

to find the moment matching estimator 6.

In general, there are no closed-form formulas for the moment-matching estimators, and numerical
methods must be employed. In R, we can use, for example, the fitdist () function in the
fitdistrplus R package to perform moment-matching estimation by simply adjusting the
argument method. For example, for our exponential distributed sample

set.seed(1)
lambda <- 1.5
x_exp <- rexp(1000, lambda)

we compute the moment matching estimator as follows:

fit_exp_mme <- fitdist(x_exp, distr = "exp", method = "mme")
summary (fit_exp_mme)

Fitting of the distribution ' exp ' by matching moments
Parameters :
estimate Std. Error
rate 1.454471 0.04599442
Loglikelihood: -625.3576 AIC: 1252.715 BIC: 1257.623

Remark. You may have noticed that the maximum likelihood and the moment-matching
estimators coincide for our exponentially distributed sample. This is a particular property of
the exponential distribution. However, in general, this is not the case for other distributions.

116

Quantile-matching

Quantile-matching estimation follows a similar idea to the moment-matching estimation. The
main difference is that we now match the empirical quantiles of the given sample and the
theoretical quantiles of the parametric distribution to be fitted. More specifically, we have the
following equations

F<(py;0) = Qnp.» k=1,...d,
where @, ,, are the empirical quantiles of the data for specified probabilities p; € [0, 1],

k=1,...,d. The solution 0 for the above equations is the quantile-matching estimator and
is (typically) computed using numerical optimization. Note that the probabilities p, € [0, 1],
k = 1,...,d must be pre-selected and, thus, the resulting estimator would depend on this

selection. We can use the fitdist() function in R to perform this estimation method. We
simply change the input of the argument method to “qme”. Note that in this case, we need to
specify the probabilities via the argument probs. Let us give a specific example

fit_exp_qme <- fitdist(x_exp, distr = "exp", method = "gme", probs = 0.5)
summary (fit_exp_qme)

Fitting of the distribution ' exp ' by matching quantiles
Parameters :
estimate
rate 1.415335
Loglikelihood: -625.7263 AIC: 1253.453 BIC: 1258.36

Maximum Goodness-of-fit

The last method that we present here is the Goodness-of-fit estimation method, also known as
minimum distance estimation. The idea of this method is to find a parameter 6 that minimizes
the “distance” between the empirical distribution function F, (z) = n~1 ZZ; L Hz; <) and
the parametric distribution F(z;6). The distance can be measure, for example, using the
Cramer—von Mises distance defined as

117

Thus, maximum goodness-of-fit estimation translates to finding 6 that minimizes D(6). In
R, we can access this method by changing the argument method to “mge” in the fitdist ()
function. Let us finish this section by trying this method in our exponential sample

fit_exp_mge <- fitdist(x_exp, distr = "exp", method = "mge")
summary (fit_exp_mge)

Fitting of the distribution ' exp ' by maximum goodness-of-fit
Parameters :
estimate
rate 1.413841
Loglikelihood: -625.75562 AIC: 1253.51 BIC: 1258.418

Note that the Cramer-von Mises distance is the default option, but it can be changed to other
distances (see help for details).

2.4 Multivariate distributions

In this section, we review some parametric models for random vectors. First, we review one
of the most well know multivariate models, namely the multivariate normal distribution, and
then we present a more general multivariate modeling approach using copulas.

2.4.1 Multivariate normal distribution

Recall that a p-dimensional random vector X = (X, ..., X)) is said to be multivariate normal
distributed with mean vector p and covariance matrix ¥ if its joint density function fx is given
by

= W= o))

1
Ix(@q,y2,) = Wexp (—2

where || denotes the determinant of ¥. We write X ~ N(u, X).

There are several implementations of the multivariate normal distribution in R. However, we
will employ the one available in the mvtnorm package.

library(mvtnorm)

We start by exemplifying how to compute the joint density function via the dmvnorm()
function:

118

dmvnorm(c (0, 0))

[1] 0.1591549

dmvnorm(c(0, 0, 1))

[1] 0.03851084

We can also compute density evaluations for several data points by giving them in a matrix
form. For instance,

x <= matrix(c(c(0, 0), c(1, 1)), 2, 2, byrow = T)
X

[,11 [,2]
[1,] 0 0
[2,] 1 1

dmvnorm(x)

[1] 0.15915494 0.05854983

Note that the default value for the mean vector is the vector of 0’s, and for the covariance
matrix, the identity matrix. We can change these default values by providing the desired
information in the respective arguments. For example,

mu <- c(1, 1)
sigma <- matrix(c(4, 2, 2, 3), ncol = 2)
sigma

[,11 [,2]
[1,] 4 2
[2,] 2 3

dmvnorm(c(0, 0), mean = mu, sigma = sigma)

[1] 0.04664928

119

Recall that for a random X, its joint distribution function Fx is given by

Fx(zy,...,2,) =P(X; <2y,...,X, <1x,).

p

The joint distribution function of X ~ N(u,X) can be evaluated in R using the pmvnorm()
function. For instance, we can compute

[P(Xl S 17X2 S 4)7
for X ~ N(u,X) with p and ¥ given by

mu <- c(1, 1)
sigma <- matrix(c(4, 2, 2, 3), ncol

2)

as follows

pmvnorm(mean = mu, sigma = sigma, upper = c(1, 4))

[1] 0.4970487
attr(,"error"

[1] 1e-15

attr(,"msg")

[1] "Normal Completion"

Moreover, pmvnorm() allow us to compute more complicated probabilities. For example, to
compute
P(X;<1l,-1<X,<4),

we simply specify values in the lower argument of pmvnorm() as follows

pmvnorm(mean = mu, sigma = sigma, lower = c(-Inf, -1), upper = c(1, 4))

(1] 0.3892527
attr(,"error")

[1] 1e-15

attr(,"msg")

[1] "Normal Completion"

Simulation of multivariate normal models can be performed using the rmvnorm() function. For
example,

120

X <= rmvnorm(n = 500, mean = c(1, 2), sigma = sigma)

head (x)
[,1] [,2]
[1,] 0.4651394 2.677685
[2,] 1.2112011 1.154777
[3,] 0.7727047 1.649591
[4,] 4.2882523 3.114262
[65,] 0.4101875 3.575816
[6,] -1.1396597 2.166214
plot(x,
main = "Simulated sample from multivariate normal",

xlab = "X1", ylab = "X2"

Simulated sample from multivariate normal

X2
0O 2 4 6
|

-4
©)

X1

Remark. The MLEs for p and X are explicit and given by the vector of sample means and the
sample covariance matrix, which can be computed easily as

colMeans (x)

[1] 0.9603442 1.9359186

121

var(x) * (1 - 1 / nrow(x))

[,1] [,2]
[1,] 4.366248 1.903049
[2,] 1.903049 2.905198

In the next section, we will cover the estimation of more complex models.

Let us conclude the present section by recalling the close-form expression for the joint charac-
teristic function of X ~ N(pu,)

1
ox (t) = exp (z’t/f — itZtT> :

2.4.2 Copulas
A p-dimensional copula is a distribution function on [0, 1]? with uniform marginals over [0, 1].
In other words, for a p-dimensional random vector U = (Uy, ..., U,,) on the unit cube, a copula
Cis

C(uy, ... u,) =PU; <uy,... .U, <)

The importance of studying copulas for multivariate modeling is summarized by the following
theorem, known as Sklar’s Theorem.

Theorem 2.6. Let F be a joint distribution function with marginals F\y, ..., F,. Then there

exists a copula C : [0,1]P — [0, 1] such that, for all zy,...,x, in R = [—00, 0],
F(zy,...,z,) = C(F(z1),..., F,(7,)). (2.3)

Moreover, if the marginals are continuous, then C' is unique. Conversely, if C' is a copula and

Fy, ..., F, are univariate distribution functions, then the function F defined in Equation 2.5 is
a joint distribution function with margins Fy, ..., F, .

We now recall a fundamental proposition in probability theory. In particular, i) is key for
performing stochastic simulation.

Proposition 2.1. Let F be a distribution function and F* its generalized inverse. Then

i) If U is a standard uniform distributed random variable, that is, U ~ U(0,1), then
P(F(U) <z)=F(x).

122

it) If Y ~ F, with F a continuous distribution function, then F(Y) ~ U(0,1).

Thus, in the case of continuous marginals, Sklar’s Theorem also suggests that we can find
the copula of a given joint distribution. More specifically, if a random vector X has joint
distribution function F'with continuous marginal distributions Fi, ..., F,, then the copula of F'
(or X) is the joint distribution function C' of the random vector (Fy(X;),..., Fy(X,)).

Copulas allow for modeling very different types of dependence structures. For instance, the
independence case is retrieved by the independence copula given by

p
Cind(“l? L) up) = Huz :

i=1

Indeed, Sklar’s Theorem implies that r.v/s (with continuous distributions) are independent if
and only if their copula is the independence copula.

Another important property of copulas is their invariance under strictly increasing transforma-
tions of the marginals, as stated in the following proposition.

Proposition 2.2. Let (Xy,..., X)) be a random vector with continuous marginals and copula
C. Let Ty, ..., T, be strictly increasing functions. Then (Ty(Xy),...,T,(X,)) also has copula C.
As previously mentioned, copulas can be obtained from given distribution functions. In
particular, we can derive copulas from several well-known multivariate distributions. These
are commonly known as ¢mplicit copulas. For example, consider X ~ N(0, P), where 0 is
the p-dimensional vector of zeroes, and Pis a p X p correlation matrix. Then, we define the
Gaussian copula as the copula of X. More specifically, the Gaussian copula is given by

C§(u) = P(B(X,) < g, oo, B(X,) < 1) = Dp(@ (1)), e, 7 (1)

where ® denotes the distribution function of a (univariate) standard normal and @, is the
joint distribution function of X. Note that considering more general X ~ N(u,Y), leads
to the same family of Gaussian copulas due to the property of invariance under increasing
transformations.

It turns out that the Gaussian copula falls into the more general family of elliptical copulas,
which we review next.

123

Elliptical copulas

Before introducing elliptic copulas, we define elliptical distributions. We say that a random
vector X follows an elliptical distribution if its characteristic function ¢y is of the form

ox (t) = exp(itp”)y (t37) |

for some vector p known as the location vector, some positive definite matrix ¥ known as
the dispersion matrix, and some function 1. Note, for instance, that the multivariate normal
distribution is a particular case with ¢(t) = exp(—%t). Another important example of elliptical
distributions is the multivariate ¢ distribution. Recall that X is said to be multivariate
t-distributed with v degrees of freedom if its joint density function is given by

L(3(v+p))
)/ (2m)P (]

) —(v+p)/2

f(x) = (14 == =)

I(iv

We write X ~ t(v, 1, 3). In this case, ¥(t) = ﬁ(—%t), where H is the Laplace transform of an
(appropriate) Inverse Gamma distribution.

Definition 2.1. An elliptical copula is the implicit copula of an elliptical distribution.

Remark. Since copulas are invariant to increasing transformations of the marginals, elliptical
copulas are typically defined in terms of the standardized dispersion matrix, or correlation
matrix.

Now, let us review how to work with elliptical copulas in R. There are several packages to do
so, for example, copula and fCopulae. However, we will use copula here.

library(copula)

Elliptical copulas can be defined in R by using the ellipCopula() function, which creates
objects of type copula. Next, we present an example of how to define a Gaussian copula of
dimension 2 with a correlation of 0.4:

gaussian_cop <- ellipCopula(

family = "normal", # Gaussian copula
dim = 2, # Dimension of the copula
dispstr = "ex", # Structure of the correlation matrix

param = 0.4 # Correlation
)

gaussian_cop

124

Normal copula, dim. d = 2
Dimension: 2
Parameters:

rho.1 =0.4

The argument dispstr characterizes the structure of the correlation matrix. The available
structures are “ex” for exchangeable, “arl” for AR(1), “toep” for Toeplitz, and “un” for
unstructured. For example, for dimension 3, the corresponding matrices are:

L py p 1 py pt L py py 1 py py
pro 1 opr |, pr 1opr), pr 1 p |, and pr 1 p3
p1 1 pi opp 1 p2 P 1 p2 Py 1

To exemplify these constructions, next, we make use of the getSigma () function to recover the
correlation matrices of Gaussian copulas defined using the different values of dispstr:

getSigma(ellipCopula(

family = "normal",
dim = 3, dispstr = "ex",
param = 0.4

)

[,11 [,2]1 [,3]
[1,] 1.0 0.4 0.4
[(2,] 0.4 1.0 0.4
[3,] 0.4 0.4 1.0

getSigma(ellipCopula(

family = "normal",
dim = 3, dispstr = "arl",
param = 0.4

))

[,11 [,21 [,3]
[1,] 1.00 0.4 0.16
[2,]1 0.40 1.0 0.40
[3,] 0.16 0.4 1.00

125

getSigma(ellipCopula(
family = "normal",
dim = 3, dispstr = "toep",
param = c(0.4, 0.5)

))

(,11 [,2] [,3]
[1,] 1.0 0.4 0.5
[2,] 0.4 1.0 0.4
[3,] 0.5 0.4 1.0

getSigma(ellipCopula(

family = "normal",
dim = 3, dispstr = "un",
param = c(0.4, 0.5, 0.2)

)

[,11 [,2]1 [,3]
[1,] 1.0 0.4 0.5
[2,] 0.4 1.0 0.2
[3,] 0.5 0.2 1.0

We can evaluate the density and distribution functions of a copula object via the dCopula()
and pCopula() functions, respectively. For example,

dCopula(c(0.5, 0.2), gaussian_cop)
(1] 1.019913

pCopula(c(0.5, 0.2), gaussian_cop)
[1] 0.1449953

Moreover, for 2-dimensional copulas, we can visualize the joint density function by using the
contour () and persp() functions:

par (mfrow = c(1, 2))
contour (gaussian_cop, dCopula)
persp(gaussian_cop, dCopula)

126

U,

A ..O.

thO

Finally, to generate random values from our copula object, we use rCopula().

gauc_samp <- rCopula(5000, gaussian_cop)

head (gauc_samp)

[,1] [,2]

[1,] 0.54092961 0.32358013
[2,] 0.89182178 0.95080018
[3,] 0.21661897 0.09522707
[4,] 0.05448803 0.59939116
[5,] 0.41222385 0.74123338
[6,]1 0.98678731 0.94826755
plot(gauc_samp,

main = "Simulation of Gaussian copula",

xlab = "U1",

ylab = "U2"

)

127

Simulation of Gaussian copula

0.8

U2
0.4

Ul

Now, let us exemplify how to define a t-copula:

t_cop <- ellipCopula(
family = "t",
dim = 2,
dispstr = "ex"
param = -0.4,
df = 2

)

t_cop

t-copula, dim. d = 2
Dimension: 2

Parameters:
rho.1 = -0.4
df = 2.0

We can now use the methods dCopula(), pCopula(), and rCopula() to compute the density
and distribution functions and generate random values for this new object, respectively. For
example,

tc_samp <- rCopula(5000, t_cop)
plot (tc_samp,

"Simulation of t copula",
IIU1 n s

main
xlab

128

ylab = "U2"

Simulation of t copula

U2

Ul

While elliptical copulas are implied by the well-known multivariate distribution functions of
elliptical distributed random vectors, the copulas themselves do not have simple closed-form
expressions. However, there are families of copulas that have simple closed-form formulas.
These are often referred to as explicit copulas. Next, we review one of the most famous families
of explicit copulas: the Archemidiean copulas.

Archimedean copulas

An Archimedean copula is characterized by a generator function ¢ : [0, 1] — [0, 00| as

Clu) = ¢~ (puy) + -+ (uy)) , (2.4)

where ¢! is the inverse of the generator ¢. In order for Equation 2.4 to be a copula, a sufficient
condition for the generator ¢ is that its inverse ¢! : [0,00] — [0, 1] needs to be completely
monotonic. In this family, the three most classical copulas are the Gumbel copula, the Frank
copula, and the Clayton copula. These copulas are constructed as follows:

Gumbel copula. The generator of this copula is ¢(t) = (—log(¢))®, @ > 1. Then

Cou(u) = exp <_ ((—log(uy)™ + -+ (—log(up))a)l/a>

129

Frank copula. In this case, the generator is ¢(t) = —log((exp(—at) — 1)/(exp(—a) — 1)),
a € R. Then

Cp(u) = L log (1 + (exp(_aul)e;plg_”o'[geipl(—aup) - 1)) ‘

Clayton copula The generator of this copula is given by ¢(t) = a 1(t*® — 1), a > 0 (or
a > —1 for dimension 2). Then

—1
Colu) = (7 + -+ ;@ —p+1)"7" .
Remark. Note that the three copulas above are uniparametric.

In R, we can use the archmCopula() function to construct Archimedean copulas. For example,
a 2-dimensional Gumbel copula of parameter oo = 2.5 is created as follows

gum_cop <- archmCopula(family = "gumbel", dim = 2, param = 2.5)
gum_cop

Gumbel copula, dim. d = 2
Dimension: 2
Parameters:

alpha = 2.5

Again, dCopula(), pCopula(), and rCopula() give access to the density and distribution
functions and the random values generator, respectively.

For example,

par (mfrow = c(1, 3))
contour (archmCopula(family

"gumbel", dim = 2, param = 2),

dCopula,
main = "Gumbel copula",
nlevels = 20
)
contour (archmCopula(family = "frank", dim = 2, param = 5.5),
dCopula,
main = "Frank copula",
nlevels = 20
)

contour (archmCopula(family = "clayton", dim = 2, param = 2),

130

dCopula,
main = "Clayton copula",
nlevels = 20

Gumbel copula Frank copula Clayton copula

uz

Uy Uy Uy

We will study some properties of these Archimedean copulas when we cover dependence
measures.

2.4.3 Constructing multivariate distributions from copulas

Given a copula C and marginals Fy, ..., F},, we now want to construct a multivariate distribution
from these components. The copula package allows us to do this via the mvdc () function,
which creates objects of the type mvdc. There are three main arguments for this function:
copula, which is a copula object, margins a character vector with the names of the marginals,
and paramMargins, which is a list with the parameters of the marginals. The use of this
function is better illustrated with an example. Let us imagine that we want to create a bivariate
distribution with normally distributed marginals X; ~ N(1,4) and X, ~ N(2,2) and copula
the Clayton copula with parameter a = 2. First, we need the copula object:

clay_cop <- archmCopula(family = "clayton", dim = 2, param = 2)

We can now define our mvdc object:

131

my_mvd <- mvdc(

copula = clay_cop,

margins = c("norm", "norm"),

paramMargins = list(list(mean = 1, sd = 2), list(mean = 2, sd = sqrt(2)))
)

my_mvd

Multivariate Distribution Copula based ("mvdc")
@ copula:
Clayton copula, dim. d = 2
Dimension: 2
Parameters:
alpha =2
@ margins:
[1] "norm" "norm"
with 2 (not identical) margins; with parameters (@ paramMargins)
List of 2
$:List of 2
..$ mean: num 1
..$ sd : num 2
$:List of 2
..$ mean: num 2
.$ sd : num 1.414214

We can now use dMvdc () to access the joint density of our multivariate model:

dMvdc(c(1,2), my_mvd)

[1] 0.08333573

The joint distribution function can be evaluated using pMvdc ():

pMvdc(c(1,2), my_mvd)

[1] 0.3779645

Again, we can use contour () and persp() to visualize our distribution:

132

par (mfrow = c(1, 2))

contour (my_mvd, dMvdc, xlim = c(-4, 5), ylim = c(-2, 5)) # xlim and ylim must be given

persp(my_mvd, dMvdc, xlim = c(-4, 5), ylim = c(-2, 5))

< —
NN—
x—.
o_.
AN
T T
-4 0 2 4
X1

Finally, random values from our multivariate model can be generated using rMvdc():

my_mvdc_sample <- rMvdc(5000, my_mvd)
head (my_mvdc_sample)

[,1] [,2]
[1,] 0.1009846 0.7844453
[2,] -1.3441178 0.6030844
[3,] 2.5885680 2.5168967
[4,] 1.8196410 3.0904643
[5,] 3.0041156 2.0874910
[6,] -1.4500833 0.8198126

plot (my_mvdc_sample,

main = "Simulation of multivariate distribution",
xlab = "X1",
ylab = "X2"

)

133

Simulation of multivariate distribution

X2
-2 0 2 4 6
I

X1

Remark. We can pass user-defined distributions for the marginals as long as the density
(d), distribution (p), and quantile (q) functions are available. For example, if we name our
distribution foo, then we need the dfoo(), pfoo(), and qfoo () functions.

2.4.4 Dependence measures

We now present some measures that assess the strength of dependence between random variables
in different ways. We will limit ourselves to bivariate random vectors (X, X,) for presentation
purposes.

We first recall one of the most popular dependence measures: Pearson correlation. The
correlation between X; and X,, denoted by p(X;, X,), is given by

(X, X) — E(X))E(X,)
\/Var(Xl)Var(XZ)

We know that if X; and X, are independent, then p(X;, X5) = 0, but the converse is false. If
|p(X;, X5)| =1 is equivalent to saying that X, = a + bX; for some a € R and b # 0.

p(XDXQ) =

There are several pitfalls of using the correlation. For instance, we can have perfectly dependent
random variables that exhibit relatively low correlation:

set.seed(1)

x <- rexp(100)

y <- exp(x * 10)
cor(x, y)

134

[1] 0.4163004

Moreover, the correlation depends on the marginal distributions and may not even exist in
some cases (we require finite second moments).

Hence, we now introduce other measures of dependence that depend only on the underlying
copula of our multivariate model.

Rank correlation

There are two crucial rank correlation measures: Kendall’s tau and Spearman’s rho. The
empirical estimators of rank correlations can be calculated by looking at the ranks of the data
(i.e., the positions of the data), hence the name. We begin by defining Kendall’s tau, which
can be understood as a measure of concordance for a bivariate random vector. Recall that two
point in R?, lets say (z,z,) and (£, 7,), are said to be concordant if (v, — Z,)(zy — To) >0
and discordant if (z, — Z1)(xy — Z4) < 0. This motivates the following definition for random
vectors (X, X5)

Definition 2.2. For two random variables X; and X,, Kendall’s tau is given by

p(X1, X)) = P((X; — X3)(Xy — Xy) > 0) = P((X; — X)(X, — X,) <0),
where (X, X,) is an independent copy of (X, X,)
In R, we can compute the empirical Kedall’s tau by using method = "kendall" in cor():

set.seed (1)

x <- rexp(100)

y <- exp(x * 10)

cor(x, y, method = "kendall")

(1] 1

The second way to measure rank correlation is with Spearma’s rho. Although this measure
can also be defined in terms of concordance and discordance for random pairs, we adopt the
following definition:

Definition 2.3. For two random variables X, and X, with distribution functions F; and Fj,
respectively, Spearma’s rho is given by

ps(X1, Xo) = p(F1(X), F5(Xy)),

where p denotes the Pearson correlation.

135

In R, the empirical Spearman’s rho can be computed by changing method = "spearman" in
cor():

set.seed(1)

x <- rexp(100)

y <- exp(x * 10)

cor(x, y, method = "spearman")

(11 1

As previously mentioned, an important feature of rank correlations is that they depend only
on the (unique) copula of (X, X,).

Proposition 2.3. Let X; and X, random variables with continuous marginal distribution
functions and unique copula C. The rank correlations are given by

1 1
p0.) =1 [[Cluup)dCluy,)~ 1
0 0

1 1
ps(Xy, X,) = 12/ / (C(uy,ug) — uyug)duy dusg
0 Y0

The copula package comes with the functions tau() and rho () to compute the rank correlations
for a copula object. Let us give an example:

clay_cop <- archmCopula(family = "clayton", dim = 2, param = 2)
tau(clay_cop)

[1] 0.5

rho(clay_cop)

[1] 0.6828928

136

Coefficients of tail dependence

The coefficients of tail dependence measure the strength of dependence in the tails of a bivariate
distribution. These are defined as follows:

Definition 2.4. Let X; and X, be random variables with distribution functions F} and F,
respectively. The coefficient of upper tail dependence A\, of X, and X, is

Ay = A (X, Xp) = qlg{{ P(X, > F5(q) | X1 > F{ (9),
provided a limit A\, € [0, 1] exists. If A, € (0, 1], then we say that X; and X, show upper tail
dependence. Alternatively, if A\, = 0, then they are said to be asymptotically independent in
the upper tail. Similarly, we define the coefficient of lower tail dependence \; as

A=A, (X, X)) = qll%l+ P(X, < Fy(q) | Xy <Ff(q),
provided a limit A; € [0, 1] exists.

When the distribution functions of X; and X, are continuous, the upper and lower tail
dependence coefficients can be written (solely) in terms of the copula of the bivariate distribution.
More specifically, we have that

1—2
A, = lim 122 C@D g = g G20

q—1- 1—gq =0t ¢

In R, we can compute these coefficients for a copula object using lambda (). For example,

lambda(clay_cop)

lower upper
0.7071068 0.0000000

We conclude this section by providing Table 2.3, which contains the closed-form formulas of
some dependence measures for the copula models introduced so far.

Table 2.3: Kendall’s tau and coefficients of tail dependence for some copulas. D, is the

Debye function D, () = 61 foe t/(exp(t) —1)dt and t, ., is the cdf of a univariate ¢
distribution with v + 1 degrees of freedom

Copula Pr Ay A

Gaussian (2/m)arcsin(p) 0 0

137

Table 2.3: Kendall’s tau and coefficients of tail dependence for some copulas. D, is the
Debye function D, () = 61 foe t/(exp(t) —1)dt and t,, is the cdf of a univariate ¢
distribution with v + 1 degrees of freedom

Copula Pr Ay A

t (2/m) arcsin(p) 2t,. g—\/(u +1)(1—p)/(1+ p)) Same as A,
Gumbel 1-1/«a 2 — Y/« 0

Frank 1—4a7 (1 —Dy(a)) 0 0

Clayton af(a+2) 0 21/
(a>0)

2.4.5 Fitting

Next, we will review two estimation methods for multivariate models based on copulas.

Full maximum likelihood estimation

Consider X = (X1, ... ,Xp) a random vector with joint distribution function F which is specified
by marginals with distribution functions Fj ..., F), and densities f; ..., f,, and a copula C
with density c¢. Furthermore, let Bj be the parameters of the jth marginal, that is, f;(-, Bj),
j=1,...,p, a be the parameters of the copula C, i.e., C(-,a), and 6 = (3, ... ,Bp,oz). Next,
suppose that we have n independent realizations X = {x, = (z;1,...,%;,) : @ = 1,...,n} from X.

»ip
Then, the loglikelihood function is given by

n n P
l(e)i> :Zlog(C<F1(xil;ﬁl)7“ (szB + Zlog zgaﬁ)
i=1 =1 j=1
Thus, the maximum likelihood estimator 0 of 0 is given by
6 = arg max,_,[(6;X).

Let us now illustrate how to implement this procedure in R. Consider the following multivariate
model:

my_mvd <- mvdc(
copula = ellipCopula(family = "normal", param = 0.5),
margins = c("gamma", "gamma"),
paramMargins = list(list(shape = 2,scale = 1), list(shape = 3, scale = 2))

)

138

Then, we simulate a sample from the model above

n <- 200
set.seed(1)
sim_dat <- rMvdc(n, my_mvd)

Firstly, we can make loglikelihood evaluations for a certain set of parameters using the
loglikMvdc () function. For example, using the original parameters of our model, we obtain:

loglikMvdc(param = c(2, 1, 3, 2, 0.5), sim_dat, my_mvd)

[1] -793.0129

Note that the parameters must be passed in vector form and ordered: first, the parameters
of the marginals and last, the copula parameters. Now, to perform MLE, we can use the
fitMvd () function. In this case, we need to pass the data, an mvdc object with the structure
that we want to fit, and the starting values for the optimization. For example,

mut_fit <- fitMvdc(sim_dat, my_mvd, start = c(1, 1, 1, 1, 0.1))
mut_fit

Call: fitMvdc(data = sim_dat, mvdc = my_mvd, start = c(1, 1, 1, 1,
0.1))
Maximum Likelihood estimation based on 200 2-dimensional observations.
Copula: normalCopula
Margin 1
ml.shape ml.scale
2.1431 0.9435
Margin 2 :
m2.shape m2.scale
3.308 1.859
Copula:
rho.1
0.4879
The maximized loglikelihood is -792.2
Optimization converged

A useful characteristic of the implementation above is that we get an mvdc object with the
estimated parameters as part of the output, which can be accessed using the @ operator. Then,
we can use all the methods for mvdc objects with our fitted multivariate model. For instance,

139

persp(mut_fit@mvdc, dMvdc, xlim = c(0, 4), ylim = c(0, 6))

CSOCSSO0S0SS

IR

\“““:““‘
5SS

SS

Two-step estimation

When the dimension p increases, the number of parameters to be estimated increases as well,
making the optimization problem harder. In such a case, separating the estimation problem
into fitting the marginals and the copula separately can significantly reduce the computational
burden. This approach is often referred to as a two-stage parametric maximum likelihood
method. More specifically, the method consists of estimating first the parameters of the
marginals, that is, we first compute

/BJ:argmaxﬁzlog(uf](l‘z]’ﬁ))’ j:]-uap

=1

Next, we estimate the parameter o of C, given the parameters of the marginals Bj, 7=1..,p,
by finding

n
& = argmax, Y _10g(c(Fy (2,15 8,), s Fy(w338));).
i—1
In R, we can use the machinery introduced in Section 2.3 to fit the marginal distributions,
and with those estimators at hand, then we can use the fitCopula() to find the MLE of the
copula parameters. Let us now look at a specific example. First, we estimate the parameters

of the marginals

parl <- fitdist(sim_dat[, 1], distr = "gamma'")$estimate
parl

shape rate
2.143032 1.059156

140

par2 <- fitdist(sim_dat[, 2], distr = "gamma")$estimate
par2

shape rate
3.3083168 0.5378141

Next, using the estimators above, we find the evaluation points (F}(x,;; Bl), Fy(,; 32)) that
will be used to estimate the copula parameters.

u_dat <- cbind(pgamma(sim_dat[, 1], pari[1], pari[2]),
pgamma (sim_dat[, 2], par2[1], par2[2]))

Finally, we estimate the copula parameters using fitCopula()

cop_fit <- fitCopula(my_mvd@copula, u_dat, start = 0.1)
cop_fit

Call: fitCopula(my_mvd@copula, u_dat, start = 0.1)
Fit based on "maximum pseudo-likelihood" and 200 2-dimensional observations.
Copula: normalCopula
rho.1
0.4879
The maximized loglikelihood is 27.2
Optimization converged

Thus, the estimated multivariate model would be the following;:

mut_fit_2stage <- mvdc(
copula = cop_fit@copula,
margins = c("gamma", "gamma'),
paramMargins = list(
list(shape = unname(parl[1]), rate = unname(pari[2])),
list(shape = unname(par2[1]), rate = unname(par2[2]))
)

)
mut_fit_2stage

141

Multivariate Distribution Copula based ("mvdc")

Q@ copula:
Normal copula, dim. d = 2
Dimension: 2
Parameters:
rho.1 = 0.4879189
@ margins:
[1] "gamma" "gamma"
with 2 (not identical)
List of 2
$:List of 2
..$ shape: num 2.143032
..$ rate : num 1.059156
$:List of 2
..$ shape: num 3.308317
..$ rate : num 0.5378141

margins; with parameters (@ paramMargins)

with corresponding loglikelihood

loglikMvdc(

param = c(parl, par2, cop_fit@copula@parameters),

sim_dat,
mut_fit_2stage
)

[1] -792.1991

2.5 Linear regression

Linear regression is one of the most commonly used statistical methods in practice. The main
idea is to use explanatory variables (or covariates) to explain (and predict) a random variable
of interest. More specifically, a linear regression model relates a response variable Y to a
p-dimensional vector X = (X4, ...

where = (B, ... ,BP)T. It is common practice to add an intercept parameter [3;, so that the

linear model becomes

, X,) of covariates via the identity

p
ElY | X]=) X;8=X5,
j=1

142

E[Y | X] = 8, + XB.

For notation convenience, the intercept is included among the other parameters, that is,
B =By, P1, - ,,BP)T. Note that § is now a (p + 1) dimensional vector. We now want to express
our regression model in terms of matrix products. To that end, we need to make an extra
adjustment consisting of adding the covariate X, = 1 to X. Thus, the regression model can be
written as

P
E[Y | X]=XB8=5+ > X;8;.
j=1

Now assume that we have a set of observations (y;,%;), ..., (Y, z,), where x; = (z;q,...,7;,)
are vectors of covariates, ¢ = 1,...,n, and that we want to estimate S from this data. The
most common method to do so is the method of least squares, which consists of finding the
coefficients 8 = (8, ..., 8,) that minimize the residual sum of squares

n

RSS(B) = Z(yz — By — Zwijﬂj)Q :

i—1
Before showing how to minimize the above expression, we introduce further notation. Let X

be the n x (p + 1) matrix with i-th row the vector x; (with 1 in the first position) and let
y = (y1,---,9,) . Then we can write the residual sum of squares as

RSS(B) = (y —XB) " (y —XB).

It is easy to see that the value of 8 that minimizes the expression above is given by

B=(X"X)"'X'y.

With the estimated parameters B at hand, we can now compute the predicted values y for the
input data as

y = Xp3.
Moreover, we could use the above expression to predict values for new covariate information.

In R, linear regression can be performed using the Im() function. Let us now look at a specific
example, dealing with the Prostate Cancer data set available in the genridge R package. First,
we need to load the data set into our working space:

library(genridge)

data(prostate)

prostate <- prostate[, -10] # No relevant for the present analysis
head (prostate)

143

lcavol 1lweight age 1bph svi lcp gleason pgg4b lpsa

1 -0.5798185 2.769459 50 -1.386294 0 -1.386294 6 0 -0.4307829
2 -0.9942523 3.319626 58 -1.386294 0 -1.386294 6 0 -0.1625189
3 -0.5108256 2.691243 74 -1.386294 0 -1.386294 7 20 -0.1625189
4 -1.2039728 3.282789 58 -1.386294 0 -1.386294 6 0 -0.1625189
5 0.7514161 3.432373 62 -1.386294 0 -1.386294 6 0 0.3715636
6 -1.0498221 3.228826 50 -1.386294 0 -1.386294 6 0 0.7654678

We aim to explain the variable 1psa (level of prostate-specific antigen) in terms of the other
variables. The following is a scatter plot matrix showing every pairwise plot between the
variables:

plot(prostate)

25 45 -1 2

ol
LR

D001

%)
<.

1001

40 70

[=}
=}
o
©
o
o
©
3
o
w

One can observe, for example, that lcavol and lpc are positively correlated with lpsa.
Moreover, note that svi is a binary variable, and gleason is a categorical variable.

We now fit a linear regression model using all our covariates:
prost_lm <- lm(formula = lpsa ~ lcavol + lweight + age + lbph

+ svi + lcp + gleason + pggdb, data = prostate)
prost_1lm

Call:
Im(formula = lpsa ~ lcavol + lweight + age + lbph + svi + lcp +

144

gleason + pggldb, data = prostate)

Coefficients:
(Intercept) lcavol lweight age 1lbph svi
0.181561 0.564341 0.622020 -0.021248 0.096713 0.761673
lcp gleason pgg4b
-0.106051 0.049228 0.004458

Using our linear model above, we can now compute the predicted values for the input data
with the function predic():

pros_pred <- predict(prost_1lm)
head (pros_pred)

1 2 3 4 5 6
0.8229078 0.7612550 0.4416131 0.6199877 1.7315458 0.8434007

If we want to predict values of a new set of covariate values, these have to be passed into the
predict () function in the form of a data frame with column names equal to those of the data
frame used to create the linear mode. For example,

xn <- matrix(c(1.35, 3.6, 64, 0.1, 0, -0.18, 6, 2.5), 1)
colnames(xn) <- names(prostate[, -9])

xn <- as.data.frame(xn) # Covariates have to be in the form of a data.frame
Xn

lcavol lweight age 1lbph svi lcp gleason pgg4b
1 1.35 3.6 64 0.1 0 -0.18 6 2.5

predict(prost_lm, xn)

1
2.158081

So far, we have made minimal assumptions regarding the linear model. However, we need
further assumptions to draw inference about the parameters and the model. More specifically,
we assume that our model is of the form

}/ZZX’L/B—}_GZ’ /izl,...,n,

145

where the e;, called error terms or residuals, are uncorrelated with E[e;] = 0 and Var(e;) = o2
Moreover, note that by using the vector notation e = (eq, ...,e,) ", we can rewrite the model
as

Y=Xg+e.

Under these assumptions, it is easy to see that the covariance matrix of the least squared
estimator 3 is given by

Var(f) = o2(XTX) L.
Note also that we can estimate the residuals as

~

e=y—y.
In R, one can compute the residuals of a linear model using the residuals() function. For

instance,

res_pros <- residuals(prost_1lm)
summary (res_pros)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.766445 -0.355096 -0.003279 0.000000 0.380866 1.557704

It turns out that properties of the estimate residuals €, lead to the following unbiased estimator
of the variance o

1 1 n
~9 _o\T) = _)2
o 7n_p_1(y y) (y—y) p— ;Zl(yz Ys)

If we further assume that the residuals are normally distributed with mean 0 and variance o2,

that is, e; ~ N(0,02), i = 1...,n, then it is easy to show that
B~ N(Bo*(XTX)),
and
(n—p—1)5%~0*xp_, 1,

where X7217p71 denotes a chi-squared distribution with n — p — 1 degrees of freedom. Moreover,

B and 62 are independent. These properties are particularly useful for performing hypothesis
testing and creating confidence intervals for the parameters j3;.

146

To test the hypothesis that a coefficient of the linear model j; is equal to zero, i.e., §; =0, we
consider the standardized coefficient or Z-score

B
2= — R
T
where v; is the j-th diagonal element of (XTX)~!. Under the null hypothesis that B; =0, z;
is t,,_,_; distributed, and hence large (absolute) values of z; will lead to the rejection of this

null hypothesis. In R, we can use summary () to access the values of these statistics (¢-statistic
column):

summary (prost_1lm)

Call:
Im(formula = lpsa ~ lcavol + lweight + age + lbph + svi + lcp +
gleason + pggdb, data = prostate)

Residuals:
Min 1Q Median 3Q Max
-1.76644 -0.35510 -0.00328 0.38087 1.55770

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.181561 1.320568 0.137 0.89096

lcavol 0.564341 0.087833 6.425 6.55e-09 *x*x

lweight 0.622020 0.200897 3.096 0.00263 *x*

age -0.021248 0.011084 -1.917 0.05848 .

1bph 0.096713 0.057913 1.670 0.09848 .

svi 0.761673 0.241176 3.158 0.00218 =*x*

lcp -0.106051 0.089868 -1.180 0.24115

gleason 0.049228 0.155341 0.317 0.75207

pggés 0.004458 0.004365 1.021 0.31000

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6995 on 88 degrees of freedom
Multiple R-squared: 0.6634, Adjusted R-squared: 0.6328
F-statistic: 21.68 on 8 and 88 DF, p-value: < 2.2e-16

R also provides the p-values associated with these tests (column Pr(>/t/)). Recall that a
p-value is the probability of obtaining test results at least as “extreme” as the results observed,

147

assuming that the null hypothesis is correct. In other words, the smaller the p-value, the
stronger the evidence that we should reject the null hypothesis. A nice feature of R is that
marks with * and . the parameters with p-values lower than commonly used significance
levels.

It is often the case that we need to test for the significance of groups of coefficients simultaneously.
For that purpose, we can use the F statistics, defined as

(RSSy — RSS,)/(p1 — po)
RSS;/(n—p; —1) ’

F=

where RSS; is the residual sum of squares for the fit of the bigger model with p; +1 parameters,
and RSS,, is the corresponding value for the (nested) smaller model with p, + 1 parameters.
Under Gaussian assumption on the residuals, and that the smaller model is correct, the F
statistics is F), _, ., _; distributed. In the output of the summary () function above, we have
an F statistics (and corresponding p-value) that compares with a model with all coefficients
equal to zero (i.e., test the null hypothesis: “All coefficients are zero”).

Finally, note that summary () displays additional information, such as the Multiple R-squared.
This measures the proportion of the variance in the response variable that the model can
explain, and it varies from 0 to 1. Thus, we should aim for a model with multiple R-squared
as close to 1 as possible. The last piece of information is the Adjusted R-squared, which is
simply an adjustment to the multiple R-squared that considers the data size and the number of
covariates. Hence, the adjusted R-squared is recommended to be used over the (conventional)
multiple R-squared.

Considering all the information described above, let us now consider a smaller model that
consists only of the covariates 1cavol, lweight, 1bph, svi, and without an intercept.

prost_lm2 <- Im(formula = lpsa ~ lcavol + lweight
+ 1lbph + svi - 1, data = prostate)
summary (prost_1lm2)

Call:
Im(formula = lpsa ~ lcavol + lweight + 1lbph + svi - 1, data = prostate)

Residuals:
Min 1Q Median 3Q Max
-1.84248 -0.39868 0.01499 0.44124 1.51028

Coefficients:
Estimate Std. Error t value Pr(>|t|)
lcavol 0.53274 0.07370 7.229 1.34e-10 **x*

148

lweight 0.44069 0.03083 14.293 < 2e-16 **x*

1lbph 0.09098 0.04992 1.822 0.071619 .
svi 0.71339 0.20651 3.455 0.000832 *x*x
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7011 on 93 degrees of freedom
Multiple R-squared: 0.9368, Adjusted R-squared: 0.9341
F-statistic: 344.8 on 4 and 93 DF, p-value: < 2.2e-16

We can see that for the covariates selected, we can reject the null hypothesis 8, = 0, and we
obtain a larger adjusted R-squared. All good indicators that our model is better.

Furthermore, we can test if “the smaller model is correct” using the F statistics, which can be
accessed in R via the anova() function:

anova(prost_lm, prost_lm2)

Analysis of Variance Table
Model 1: 1lpsa ~ lcavol + lweight + age + lbph + svi + 1lcp + gleason +

Pgg45
Model 2: 1lpsa ~ lcavol + lweight + 1lbph + svi - 1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 88 43.058
2 93 45.715 -5 -2.6568 1.086 0.3738

Hence, we cannot reject the null hypothesis that “the smaller model is correct”. We can also
use information criteria to assess the quality of a model. For instance, we can compute the
AIC for our two models using the AIC() function:

AIC(prost_1lm)

[1] 216.4952

AIC(prost_1lm2)

[1] 212.303

149

Confirming our previous selection.

We are often also interested in constructing confidence intervals for the coefficients ;. For-
tunately, it is easy to see that under the Gaussian assumption on the residuals, a (1 — «)
confidence interval for 3, is given by

5 1/2 4

B; £ zlfa/QUj/ 0,
where z;_,, /5 is the (1 — «/2) quantile of a standard normal distribution. We can compute

confidence intervals in R via the confint () function. For instance, for our last model, we
have

confint (prost_1lm2)

2.5 % 97.5 %
lcavol 0.386398071 0.6790891
lweight 0.379458771 0.5019129
1bph -0.008161222 0.1901136
svi 0.303311220 1.1234695

Corresponding to 95% confidence intervals for the parameters B;-

Finally, note that all the above discussion regarding the inference of a linear model is based on
the assumption that the residuals are normally distributed with mean 0 and constant variance
o?. Hence it is important to check whether this assumption is satisfied or not. One way to
do this is by using visual tools, which are readily available using the plot() function. For
instance,

plot(prost_1lm2)

150

Residuals

Standardized residuals

1

Residuals vs Fitted

950

©) o) o
O o o) ©
o @ Oo %O %o o
8 (0] (0]
Q_,D-———- —e“ O %‘@O Qg—‘o_%_;)@ S/} oq()) o)
oo o %o
o o oo o©
479
390
[[[[
1 2 3 4

Fitted values
Im(lpsa ~ Icavol + lweight + Ibph + svi — 1)

Q-Q Residuals

I I I I I
-2 -1 0 1 2

Theoretical Quantiles
Im(lpsa ~ Icavol + lweight + Ibph + svi — 1)

151

Scale—-Location

% o 390
= . 950 4
g - o © 9 000 o © o
o) o © o °
= o O O O0p O o
T ® o cgo o ooO 50
N ¢} o o)
o} o o)
-E LO _ o O%O o O 8) OO o
° & o
S o o o °c°% 0% o
% o o} o}
- © I I I I
1 2 3 4

Fitted values
Im(Ilpsa ~ Icavol + lweight + Ibph + svi — 1)

Residuals vs Leverage

)
S « o %9 oo
B © O&po o oe
H p—
o © o _o o))
—_ (@] (@) (@) (o]
=] — W- g%om o 0 ©
S ‘-' © %8’ oOO %o o ° ©
° I o @) o o OO @®
8 o) o) O o o
— o)
c 470
S o _| 390
7p] I
[[[[[
0.00 0.02 0.04 0.06 0.08
Leverage

Im(lpsa ~ Icavol + lweight + Ibph + svi — 1)

The first plot (Residuals vs Flitted) helps us to assess the condition of mean zero of the residuals.
Ideally, we should observe approximately a straight line around 0 (as above). The second plot
(Normal Q-Q) deals with the normality of the residuals, and we should preferably observe
points close to the identity line. The third plot (Scale-Location) assists us in identifying if the
assumption of constant variance holds. We look for a red line close to a horizontal line (no
matter the location). Finally, the fourth plot (Residuals vs Leverage) helps us to identify data
points that are “extreme” and affect considerable the regression model. This is the case (not
observed in the example above) when having points outside the dotted red lines. An in-depth
analysis of those points should take place in such a situation.

152

3 R for Finance

3.1 Market portfolio and CAPM

Let us imagine that we have available a certain amount of money and want to invest it by
buying different stocks available in the market. A combination of stocks that we can buy is
what is called a portfolio. The main problem that we want to address here is determining the
portfolio, or equivalently, the ratio of stocks that we should buy. Ideally, we would like to pick
a portfolio that will return a high profit with low risk. Modern portfolio theory gives us some
solutions to this problem. The main idea of modern portfolio theory is to assume that the
price movements (or returns) of stocks (or risky assets) are random variables. Then, we can
define the risk of a particular stock as how much the individual return of that stock deviates
from its mean return. This is usually quantified by the standard deviation, which is often
called wvolatility in finance. Typically, a stock that might give high returns have high volatility,
and stocks with low volatility often make low returns. Hence, the problem we want to address
is calculating the portfolio that generates a higher profit with less volatility than individual
stocks.

3.1.1 Mean-variance portfolio

We start this section by giving a simple example. Consider two stocks, A and B, with
corresponding returns R, and Ry following the joint probability mass function described in
Table Table 3.1 below.

Table 3.1: Joint density for R4 and Rp

State R, Ry Probability

Depression —20% 5% 0.25
Recession 10% 20% 0.25
Normal 30% —12% 0.25
Boom 50% 9% 0.25

Now, suppose that we want to construct a portfolio with a weight w, on stock A and wgz on
stock B, with w, +wp = 1. Then, the return of the portfolio is

Rp :U}ARA+wBRB,

153

which is also a random variable. Then, the expected value and variance of R,, are given by
E[R,] = waE[R4] + wpE[Rp],

and
Var(R,) = w3 Var(Ry) + wiVar(Rg) + 2w, wgCou(Ry, Rp),

respectively. Consider now w, = 0.6. Then we can compute the expected value and variance
of the portfolio as follows. First, we compute the expected value and variance of A and B and
the covariance of A and B:

rA <- c(-0.2, 0.1, 0.3, 0.5)
rB <- ¢(0.05, 0.2, -0.12, 0.09)
prob <- rep(0.25, 4)

expA <- sum(rA * prob)
expA

[1] 0.175

expB <- sum(rB * prob)
expB

[1] 0.055

varA <- sum(rA~2 * prob) - expA~2
varA

[1] 0.066875

varB <- sum(rB”2 * prob) - expB~2
varB

[1] 0.013225

covAB <- sum(rA * rB * prob) - expA * expB
covAB

[1] -0.004875

With the above quantities at hand, we can now compute the expected return and variance of
our portfolio as follows:

154

wA <- 0.6
wB <- 1 - wA

exp_por <- wA * expA + wB * expB
exp_por

[1] 0.127

var_por <- varA * wA"2 + varB * wB™2 + 2 * covAB * wA * wB
var_por

[1] 0.023851

Moreover, the standard deviation is given by

sqrt (var_por)

[1] 0.1544377

On the other hand, note that the weighted average of the standard deviations of R, and Rp
is

wA * sqrt(varA) + wB * sqrt(varB)

[1] 0.2011612

which is greater than the standard deviation of the portfolio. This is known as the diversification

effect.

Diversification Effect: The standard deviation of the portfolio is less than or equal to the
weighted average of the standard deviations of the individual securities. Equality holds only if
the correlation of the assets is 1.

So far, we have treated w, and wg as fixed constants. However, if w, and wg change in a
way such that w, +wp = 1, then E[R,] and SD(R,,) also change. This leads to the following
definition of an opportunity set.

Definition 3.1 (Opportunity set). The possible pairs of E[R,] and SD(R,,) that can be formed
by varying w, (and hence wp) is called the opportunity set or feasible set.

155

Remark. Note that in the definition above, we allow w, < 0 (this means we can borrow A) and
w4 > 1 (this means wgy can be negative, and hence we can borrow B). However, it is common
practice to restrict wy to [0, 1].

We now want to depict the shape of the opportunity set for stocks A and B. For computational
purposes, it is convenient to write the expressions of E[Rp] and Var(R,) in terms of matrices
operations (remember, R is quite efficient doing these types of operations). Thus, we first need
to introduce further notation. Let R = (R4, Rp) and w = (w4, wp), then

E[R,] = ER]w',

and
Var(R,) = wVar(R)w',

where E[R] is the mean vector of R, i.e., E[R] = (E[R4], E[Rp]), and Var(R) is the covariance
matrix of R, that is,

- Var(R,) Cov(Ry4, Rp)
Var(R) = (COU(RA,?%B) Var(jj?B)B) ’

Thus, an alternative solution to finding the mean and standard deviation of a portfolio with
w,4 = 0.6 for stocks A and B described in Table Table 3.1, is as follows:

w <- c(whA, 1 - wh)

exp_por <- w %*J), c(expA, expB)
exp_por

[,1]
[1,1 0.127

sigma <- matrix(c(varA, covAB, covAB, varB), ncol = 2)
sd_pro <- sqrt(t(w) %x*), sigma %*), w)
sd_pro

[,1]
[1,] 0.1544377

The code above can be easily modified to produce the plot of the opportunity set:

156

wa <- seq(0, 1, by = 0.01)
W <- cbind(wa, 1 - wa)

exp_p <- w 7%*} c(expA, expB)
sigma <- matrix(c(varA, covAB, covAB, varB), ncol = 2)

sd_portfolio <- function(sigma, w) {
sg <- rep(0, nrow(w))
for (i in 1:nrow(w)) {
sgli] <- sqrt(t(wli, 1) %*% sigma %*% (wli, 1))
+
S8
}

sd_p <- sd_portfolio(sigma, w)
plot(sd_p, exp_p,

type = “1",
main = "Opportunity set",
xlab = "SD(Rp)",
ylab = "E(Rp)"
)
Opportunity set
- —
—
~ O
é% -
=
o
© —
o
e | | | |
0.10 0.15 0.20 0.25
SD(Rp)

In the picture above, we can observe that there is a point on the opportunity set such that
SD(R,,) is a minimum. This point corresponds to a portfolio that can be formed from mixing

157

the assets and is known as the minimum variance portfolio (MV). In R, we can find the
weights of such a portfolio as follows:

wmin <- w[match(min(sd_p), sd_p),]
wmin

wa
0.2 0.8

The corresponding expected return and standard deviation of the minimum variance portfolio
are then

exp_mv <- wmin %*), c(expA, expB)
exp_mv

[,1]
[1,] 0.079

sd_mv <- sd_portfolio(sigma, matrix(wmin, 1))
sd_mv

[1] 0.09787237

Suppose now that we want to create a portfolio by mixing assets such that the standard
deviation of the resulting portfolio is greater than the minimum standard deviation that can
be achieved. For instance, the figure below shows that we have two options to pick a portfolio
with a standard deviation of 0.11.

Opportunity set

E(Rp)
0.06 0.10 0.14
|

0.10 0.15 0.20 0.25

SD(Rp)

158

Among these two portfolios, for sure, we would like to pick the one with a higher E[R,],
meaning the portfolio above the point MV. More generally, we can conclude that the part of
the opportunity set below the point MV would never be selected. The opportunity set above
the point MV is called the efficient frontier. The following plot shows the MV point and the

efficient frontier for our example.
Efficient frontier
exp_ef <- exp_plexp_p > as.vector(exp_mv)]

sd_ef <- sd_plexp_p > as.vector(exp_mv)]

plot(sd_p, exp_p,

type = "1",
main = "Opportunity set",
xlab = "SD(Rp)",
ylab = "E(Rp)"
)
points(sd_mv, exp_mv, col = "red", pch = 19) # MV

lines(sd_ef, exp_ef, col = "blue", lwd = 2) # Efficient frontier

Opportunity set

E(Rp)
0.06 0.10 0.14
|

0.10 0.15 0.20 0.25

SD(Rp)

Next, we want to illustrate how the shape of the opportunity changes according to the correlation
of the risky assets. For that purpose, let us consider two stocks, A and B, with the following
characteristic: E[R4] = 10%, E[Rg] = 15%, SD(R4) = 10%, and SD(Rg) = 12%. We also
assume five different possibilities for the correlation between A and B: -1, -0.5, 0, 0.5, and 1.

wa <- seq(0, 1, by = 0.01)
w <- cbind(wa, 1 - wa)

159

exp_p <- w %*x% c(0.1, 0.15)

sd A <- 0.1
sd B <- 0.12

sigmal <- matrix(c(sd_A"2, -1 * sd_A * sd_B, -1 * sd_A * sd_B, sd_B"2), 2)
sigma2 <- matrix(c(sd_A"2, -0.5 * sd_A * sd_B, -0.5 * sd_A * sd_B, sd_B"2), 2)
sigma3 <- matrix(c(sd_A"2, O * sd_A * sd_B, O * sd_A * sd_B, sd_B"2), 2)
sigmad4 <- matrix(c(sd_A"2, 0.5 * sd_A * sd_B, 0.5 * sd_A * sd_B, sd_B"2), 2)
sigmab <- matrix(c(sd_A"2, 1 * sd_A * sd_B, 1 * sd_A * sd_B, sd_B"2), 2)

sd_pl <- sd_portfolio(sigmal, w)
sd_p2 <- sd_portfolio(sigma2, w)
sd_p3 <- sd_portfolio(sigma3, w)
sd_p4 <- sd_portfolio(sigma4, w)
sd_p5 <- sd_portfolio(sigmab5, w)

plot(sd_pl, exp_p,
type = "1",
main = "Opportunity set",
xlab = "SD(Rp)",
ylab = "E(Rp)"

)

lines(sd_p2, exp_p, col = "red")
lines(sd_p3, exp_p, col = "blue")
lines(sd_p4, exp_p, col = "green")
lines(sd_pb5, exp_p, col = "orange")

legend("topleft",
leg = paste("rho =", c(-1, -0.5, 0, 0.5, 1)),
1ty = 1,
col c("black", "red", "blue", "green", "orange")

160

Opportunity set

q—
\—!_
o
~ _
o
E o
T
o
o
\—!_
o | | | | | [[

0.00 0.02 0.04 0.06 0.08 0.10 0.12

SD(Rp)

The straight line (orange) corresponds to p = 1, representing points that would have been
generated if the two assets were perfectly positively correlated. When p #+ 1, we see that the
resulting opportunity set is always to the left of the straight line, and hence the standard
deviation of these portfolios is less than the ones of the case when p = 1 for the same values
of E[R,]. This illustrates the diversification effect. Since the curve bends towards the left
more significantly as p decreases, the impact of diversification increases with decreasing p.
Furthermore, in the particular case of negative correlations, we can think of this effect as one
asset working as a safety net (or hedge) for the plunge in the price of another asset.

Multiple risky assets

We now introduce the more general setting with n stocks in a portfolio. More specifically,
suppose that we have n risky assets with random returns R, R,, ..., R,,. Then, if we construct
a portfolio with portfolio weights w, ws, ..., w,,, where w; + wy + --- + w,, = 1, the portfolio
return R, is given by

=1

Thus, the mean and variance of R,, are then given by
i—1

Var(R,) = Z w?Var(R;) + 2 Z w;w;Cov(R;, R;) .
=1

i<j

161

By letting R = (R, R,, ..., R,,) and w = (w;, w,, ... ,w,,), we can rewrite the expressions above
in terms of matrices as

and
Var(R,) = wVar(R)w',

where E[R] and Var(R) are the mean vector and covariance matrix of R, receptively.

The following example shows how to construct the opportunity set when dealing with three
risky assets.

Example 3.1. Consider three stocks, A, B, and C, with expected returns E[R4] = 0.105,
E[Rp] = 0.18, and E[R] = 0.02, respectively. The covariance matrix is the following:

0.152 —0.012 0.002
Var(R) = | —0.012 0.122 —0.002
0.002 —0.002 0.22

Then, the following code plots the opportunity set available to any investor:
exp_r <- c(0.105, 0.18, 0.02)

sigma <- matrix(
c(
0.1572, -0.012, 0.002,
-0.012, 0.1272, -0.002,
0.002, -0.002, 0.272
),
ncol = 3, byrow =T
)
sigma

[,1] [,2] [,3]
[1,] 0.0225 -0.0120 0.002
[2,] -0.0120 0.0144 -0.002
[3,] 0.0020 -0.0020 0.040

Generates a grid of values for wl and w2
w_grid <- expand.grid(
wa = seq(0, 1, length.out
wb seq(0, 1, length.out

100),
100)

162

w_grid <- as.matrix(w_grid)
w <- cbind(w_grid, 1 - w_grid[, 1] - w_grid[, 21)

Expected return
rp <- as.vector(w %*J exp_r)

sd_p <- sd_portfolio(sigma, w)
plot(sd_p, rp,

pCh ="
main = "Opportunity set",
xlab = "SD(Rp)",
ylab = "E(Rp)"
)
(L{I> AN et
: AN
; = g&g&kk\\\\\\\\\\\\
: " (@ (G
a LrH)] » « - ' ' resaae”
o
LlJ —
0
O —
o \\\\

SD(Rp)

Note that we have several portfolios that lead to the same expected return but with different
volatilities. This leads us to the idea of the minimum variance frontier, which is the curve
consisting of the smallest volatility for the same return. Thus, an investor will choose a portfolio
corresponding to the upper-half side of the minimum variance frontier. Such an upper-half side
of the minimum variance frontier is the efficient frontier described before.

To give an understanding of the effect of diversification in the case of n risky assets, we assume
for the moment the following:

(a) All securities have the same variance, i.e., Var(R,) = - = Var(R,,) = var.

163

(b) The covariance for every pair of securities is the same, i.e., Cov(R;, R;) = cov for all
i # J.

(c) We have an equally weighted portfolio, i.e., w; = --- = w,, = 1/n.

Under the above assumptions, it is easy to see that

1
Var(R,) = E(var — cov) + cov,

In particular, we have that Var(R,) — cov as n — oo.

The essence of the equation above can be summarized into two main points:

(1) When n increases, Var(R,,) decreases, and hence the diversification effect increases with
n.

(2) Even if n tends to infinity, Var(R,) does not drop to zero. There is a limit to the
diversification effect: A diversified portfolio can eliminate some, but not all, of the risk of
the individual securities.

This leads us to the following definition of systematic and unsystematic risk.

Definition 3.2.

o Systematic risk (or market risk or non-diversifiable risk) is the portion of an asset’s
risk that cannot be eliminated through diversification. Interest rates, recessions, and
catastrophes are examples of systematic risks.

o Unsystematic risk (or specific risk or diversifiable risk) is the portion of an asset’s risk
that can be eliminated by including the security as part of a well-diversified portfolio. It
represents the component of a stock’s return that is not correlated with general market
moves.

3.1.2 Capital Asset Pricing Model (CAPM)

Previously we have been dealing with portfolios consisting of two or more risky assets. Let us
now incorporate a risk-free security into our analysis. More specifically, let R, be the return
on a risky portfolio (a portfolio constituted of risky assets) and let R, be the risk-free interest
rate (i.e., the return of a risk-free asset). Next, consider a (complete) portfolio consisting of w,,
parts of the risky portfolio and w parts of the risk-free asset, w,, + w; = 1. Then, the return
R of this portfolio is given by

R == wap "‘ wfRf == wap + (1 - wp)Rf .

164

Taking the expectation in the expression above, we have

E[R] = w,E[R,] + (1 —w,)R;
= w,(E[R,] — Ry) + R;.

p

On the other hand, the variance of R is given by
Var(R) = w3Var(R,),
which implies that the standard deviation of R is
SD(R) = w,SD(R,,) .
This last equation implies that
_ SD(®)

Y= SD(R,)

Thus, we obtain the following expression for the opportunity set of this portfolio

(E[R,] — Ry)

EIR] = Ry —g b

SD(R),

which corresponds to a straight line with intercept R, and slope

(E[R,] — Ry)
SD(R,)

The latter is also known as the Sharpe ratio.

For example, let us return to Example 3.1 and take a couple of portfolios there to combine
with the risk-free asset. If the risk-free interest rate is 12%, we obtain the following picture for
the opportunity set of the (complete) portfolio

rf <- 0.12 # Risk-free rate

slopel <- (rp[60] - rf) / sd_pl[50]
slope2 <- (rp[2500] - rf) / sd_p[2500]
slope3 <- (rp[7500] - rf) / sd_p[7500]
x <- seq(0, 1, by = 0.01)

plot(sd_p, rp,

pch = ".",

xlab = "SD(R)",
ylab = "E(R)",
xlim = c(0, 0.23)

165

lines(x, slopel * x + rf)

lines(x, slope2 * x + rf)

lines(x, slope3 * x + rf)

points(sd_p[50], rp[50], col = "orange", pch = 19)
points(sd_p[2500], rp[2500], col = "green", pch = 19)
points(sd_p[7500], rp[7500], col = "blue", pch = 19)

o) —
s .
—~ [o] ’
x L - /
o ©
S T =<
C)_ —
o
I I I I I
0.00 0.05 0.10 0.15 0.20
SD(R)

Since every risky portfolio above can be combined with the risk-free security, the opportunity
set of market securities is the region between the two lines picture below:

Lo

\\\\\\\\\\\\\\\n .
O <y

E(R)
0.15
I

0.05
I

| | | | |
0.00 0.05 0.10 0.15 0.20

SD(R)
The efficient frontier that is formed from all securities is the straight line that:

(1) passes through the risk-free rate, and
(2) is tangential to the efficient frontier formed solely from risky securities.

166

The efficient frontier described above is known as the capital market line (CML).

Every rational investor would pick a portfolio on the CML. Of course, the exact point they will
pick depends on the investor’s risk preference. However, notice that every point on the CML
is formed by mixing the risk-free security with the portfolio market denoted by a red dot in
the above picture, the portfolio with the highest Sharpe ratio. This portfolio is known as the
optimal risky portfolio or market portfolio.

The CML and market portfolio in the figure above were generated using the following code:

rf <- 0.12 # Risk-free rate

amax <- max((rp - rf) / sd_p) # Slope of the CML

orp <- match(amax, (rp - rf) / sd_p) # Optimal risky portfolio
x <- seq(0, 1, by = 0.01)

plot(sd_p, rp,

pch = ".",

xlab = "SD(R)",
ylab = "E(R)",
xlim = c(0, 0.23)

)
lines(x, amax * x + rf)
points(sd_plorpl, rplorp], col = "red", pch = 19)

Moreover, we can find the weights of the market portfolio easily by typing

wlorp, 1

wa wb
0.4242424 0.9191919 -0.3434343

Note that in the above, we generated a series of values for the weights of the risky portfolio,
then computed the mean and standard deviation, and extracted from this set of values the
market portfolio. However, the weights of the market portfolio can be computed algebraically
by using the following result:

M

7

Suppose that we have n risky assets and that the market portfolio R;; has weights w
i =1,...,n. Then, for some constant c,

E[R;] — Ry
COU(Ri’ RM)

with Cov(R;, Ry,) = ZZ:1 wMCov(R;, Ry,).

=c, 1=1,....,n,

The result suggests that to derive the weights of the market portfolio, we can proceed as
follows:

167

(1) Find “weights” (they do not need to sum to 1) that make E[R;] — R; = Cov(R;, Ry;)
hold for all : =1, ..., n.
(2) Rescale the weights to sum to 1.

Note that this requires us to solve a system of linear equations, which can be easily done in R
by using solve(). For our particular example, we have

unscaled_w <- solve(sigma, exp_r - rf)
scaled_w <- unscaled_w / sum(unscaled_w)
scaled_w

[1] 0.4234973 0.9215102 -0.3450075

Earlier in this section, we pointed out that the risk (or standard deviation) of a stock can
be broken down into systematic and unsystematic risks. More specifically, we saw that the
unsystematic risk can be diversified away in a large portfolio, but the systematic risk cannot.
Thus, a diversified investor holding the market portfolio must worry about the systematic risk,
but not the unsystematic risk, of every security in a portfolio. We now introduce the concept
of beta, which gives a way to measure the systematic risk of a security. It turns out that beta
is the “best” measure of the risk of an individual security from a diversified investor’s point of
view.

The concept of beta can be better explained with a simple example. Let us assume that the
following vectors represent the historical returns of the market portfolio (r_m) and a risky asset
(r_ra)

rm <- c(
0.000341, 0.068962, 0.046964, 0.006922,
-0.029561, 0.028035, -0.027218, -0.161576,
0.060479, 0.071397, 0.058284

)

r_ra <- c(
-0.050484, 0.194222, -0.021584, -0.009475,
0.070406, -0.074354, 0.078366, -0.193192,
-0.059271, 0.148521, 0.11004

)

We now plot a graph of (r_m, r_ra) and draw the regression line that best fits the data

dat_beta <- data.frame(r m = r m, r ra = r_ra)
reg_line <- lm(r_ra ~ r_m, data = dat_beta)
plot(dat_beta)

abline(reg_line, col = "blue")

168

0.0 0.1 0.2

o

I I I I I
-0.15 -0.10 -0.05 0.00 0.05

-0.2
I

r m
The coefficients of this regression line are

reg_line

Call:
Im(formula = r_ra ~ r_m, data = dat_beta)

Coefficients:
(Intercept) r_m
0.005849 1.047370

The slope of the regression is what is called the beta of the risky assets. The natural
interpretation of beta is that the returns of the risky asset are magnified 1.047370 times over
those of the market.

The actual definition of beta is:
~ Cou(R;, Ryy)

T a(Ry)

where Cov(R;, R,,) is the covariance between the return on the ith security and the return on
the market portfolio, and o%(R,,) is the variance of the market.

In full generality, the beta of a security can be interpreted as follows: For a security with a beta
greater than 1, its movement is an amplification of the movement of the market (as represented
by the market portfolio). For a security with a beta between 0 and 1, its movements tend to
be in the same direction as the market, but to a less extent. For negative values of beta, the
security is expected to do “against” the market, meaning that it is expected to do well when
the market does poorly and vice versa.

169

More generally, for any portfolio of n risky assets, its beta [, can be computed as a weighted
average of individual asset betas, that is,

B Cov(R,, Ry) B L
B, = T};M) —;wzﬂi-

From the definition, is clear that the beta of the market portfolio is 1.

We finish this section with the most important application of beta: the capital asset pricing
model (CAPM).

The CAPM states that the expected return on a security with beta [is
E[R] = Ry + B(Ry, — Ry),

where R, is the risk-free rate, and R, is the expected market return.

Keeping R, and R, fixed, we can plot a graph of E[R] versus 8. This line is known as the
security market line (SML).

3.2 The binomial model

This section introduces the binomial tree model and uses it to compute arbitrage-free prices for
European-style options. Although the mathematical description of this model involves only
simple algebra, it is a powerful tool for understanding arbitrage pricing theory. The main idea
of the binomial model is to break the time to maturity of an option into periods. Then, in
each period, and given the underlying asset’s price at the beginning of the period, it assumes
that the stock price will change to one of two possible values at the end of the period. Thus,
we can then determine the value of the option recursively by starting at the maturity date,
evaluating the option’s value under each possibility for the final prices of the stock, and then
moving backward through the tree.

3.2.1 One-period binomial model

We start with the one-period version of the model. The model assumes that we have two assets:
a risk-free asset (e.g., a treasury bond) and a stock. Here, we denote by B, and S, the bond
and stock prices at time t, respectively. Typically, time ¢ = 0 represents the present time, and
t = 1 denotes some future time.

Let us begin by describing the behavior of the stock prices. If at time ¢ = 0, the price is S,
then the stock price at time ¢t =1, S, is given by the following random variable

170

g — uS,, with probability p, ,
17 1dS,, with probability p,,

where u, d, p,,, and p, are positive constants satisfying d < u, and p, + p;, = 1. Figure 3.1
shows the stock price development under the above specification.

’ILS()

dSo
Figure 3.1: Stock prices in a one-period binomial tree
It is often convenient to write instead
S, =52,
where Z is a random variable defined as

7w with probability p,, ,
~ |d, with probability p, .

On the other hand, the bond price is deterministic and given by

BO:]"

where R is the (risk-free) spot rate for the period.

Portfolios and arbitrage

We will consider portfolios constituted of risky assets S and bonds B. More specifically, we will
denote by x the number of bonds we hold in our portfolio, ¥ the number of stock units held,

171

and let h = (z,y). Consider now a fixed portfolio h = (z,y). Then, the value of the portfolio
at time t, Vth, is given by
VP =2xB, +yS,.

Note that this portfolio has a deterministic value at t = 0 and a stochastic value at ¢t = 1.

We now introduce one of the central concepts of the theory in this section: arbitrage portfolio.

Definition 3.3. An arbitrage portfolio is a portfolio A with the properties

Ve =0,
VE >0 with probability 1.

Essentially an arbitrage portfolio is a deterministic money-making machine. Hence, we can
interpret the existence of an arbitrage portfolio as a severe case of mispricing on the market.
Therefore, it is natural to investigate when a given market model is arbitrage-free.

It turns out that our binomial model above is free of arbitrage if and only if the following
conditions hold:
d<(1+R)<u.

Moreover, the above condition is equivalent to saying that 1 + R is a convex combination of u
and d, i.e.,
14+ R =uq, +dq,.

where ¢q,,q; > 0 and ¢, + g; = 1. In particular, the weights ¢, and ¢, can be interpreted as
probabilities for a “new probability measure Q)" with the property Q(Z = u) = ¢, Q(Z =
d) = q,. Denoting expectation with respect to this measure by E?, it is easy to see that

1
S, = ——E?[S,].
0= T HE°IS)
Q is known as the “risk-neutral measure.” Furthermore, ¢, and g, are explicit and given
by

_(1+R) —d
qu—ﬁa

_u—(1+R)
Ga="7",—a

These are known as risk-neutral probabilities and will play an essential role in option
pricing.

The above motivates the concept of risk-neutral valuation: The price of an asset is the
expectation at time 1, calculated using the risk-neutral probabilities and then discounted using
the risk-free interest rate.

172

Risk-neutral pricing

Definition 3.4. A contingent claim (financial derivative) is any random variable X of the
form X = ®(5,), where ® is some given real-valued function known as the contract function.

The interpretation is that the contract holder receives the stochastic amount X at time ¢t = 1.
Two important examples are the European call and put options. For a European call option
with strike K, we have that the X = max(S; — K,0), while for the European put option with
the same strike K, the claim is X = max(K — S;,0). In what follows, we will denote by ®(u)
and ®(d), the evaluations ®(uS,) and ®(dS,), respectively.

Our main problem is now determining the “fair” price for a given contingent claim X. If we
denote the price of X at time ¢ by II(¢; X), then, in order to avoid arbitrage, we must have

(1; X) = X.

However, the hard part of the problem is determining IT(0; X'). The way to solve this problem
is to find a portfolio h such that
Vh=X.

We call this a hedging portfolio or a replicating portfolio. Then, any price at t = 0 of the
claim X, different from Voh (the price of the replicating portfolio), will lead to an arbitrage
possibility. In other words, the price of the claim at ¢ = 0 must be given by

I(0; X) = V.

Let us now find the replicating portfolio h = (z,y) for a fix and arbitrary contingent claim X
with contract function ®. This portfolio should satisfy that

Vi =®w) if Z=u,
Vi=®(d) if Z=d.

Substituting the expression for the value of the portfolio, we obtain the following system of
equations:

z(1+ R) + yuSy = ®(u),
#(1+ R) +ydS, = d(d).

Solving for x and y in the above system gives
. 1 ud(d) —dP(u)
C1+R u—d ’
B i O(u) — P(d)
y= So u—d '

173

Then, the price at ¢t = 0 of the claim X, II(0; X), is given by

I1(0; X) = = + yS,
1 ((1+R)—d

B u—(1+R)
14+ R u—d

o cb(d)) .

Here, we recognize the risk-neutral probabilities ¢, and ¢4, and we can rewrite the pricing
formula above as

O(u) +

H(0: X) = 1 (@(w)g, + ®(d)gy)

Thus, the right-hand side can now be interpreted as an expected value under the risk-neutral
probability measure). More specifically, we have that
1

(0; X) = mEQ [X].

Example 3.2. Consider a stock with a current price of S, = 50. The stock’s price is expected
to increase to 60 or decrease to 40 during the next year. The risk-free interest rate is 5%
compounded annually. Compute the price of a 1-year European call option with a strike price
of 55.

Solution.
s0 <- 50
su <- 60
sd <- 40
rf <- 0.05

strike <- 55
u <- su / sO
d <- sd / s0

Note that d <= (1 + R) <= u is satisfied
u

[1] 1.2

(1] 0.8

174

Risk-neutral probabilities
qu <- (1 + rf - d) / (u - d)
qu

[1] 0.625

qd <- 1 - qu
qd

[1] 0.375

Value of the contingent claim at t =1
phiu <- max(su - strike, 0)
phiu

[1] 5

phid <- max(sd - strike, 0)
phid

(11 O

Derivative price

price <- (phiu * qu + phid * qd) / (1 + rf)
price

[1] 2.97619

3.2.2 Multiperiod binomial model

We now extend the one-period binomial model to multiperiod. To do so, we now let the time
index t run from ¢t = 0 to t = T, where T'is fixed. Here, T'will denote the number of periods.
As previously, we have a bond with price B, and a stock with price S, at time .

More specifically, the bond prices are deterministic and given by

Bozl,
B, =0+R)B,, n=0,.T-1.

175

On the other hand, if at time ¢ = 0, the price of the stock is Sy, then the future stock prices
are random and given by

S

n

+1:Znsn, n:(),...7T—1,

where Z, ..., Zp_; are iid random variables, taking only the two values u and d with probabili-
ties

PZ,=u)=p,, P(Z,=d) =p,.

n

In other words, during each time step, the stock price either moves up to u times its initial value
or down to d times its initial value. For example, Figure 3.2 shows the stock price behavior for
T=2.

u2 So
/
USO
W
24
So udSo
LV
174
dSo
\
d?S,

Figure 3.2: Multiperiod binomial tree

Note that the prices of the stock at time ¢ can be written as
S, =ukd=*S,, k=0,..,t,

where k denotes the number of up-moves that have occurred. Thus each node in the binomial
tree can be represented by a pair (¢, k) with k = 0, ..., ¢. Figure 3.3 shows the representation of
the nodes of a binomial tree for T = 2.

176

(1,1)
(1,0)
Figure 3.3: Nodes of a multiperiod binomial tree

177

Recall that the main aim is to find the arbitrage-free price of a given contingent claim (financial
derivative). In particular, we will only work with contingent claims of the form

X = (I)<ST))

that is, claims whose value only depends on the stock price at the final time 7}, S;. This type
of contingent claim is typically called simple. Note that the European Call and Put options are
examples of simple claims.

As in the one-period model, the problem is solved by finding a portfolio h that replicates the
final value of the contingent claim, that is, if V,* denotes the value of the portfolio at time t,
we require that

Vh=X.
Then, the price of the derivative I1(0; X) at time ¢ = 0 must be the price of the portfolio V! to
avoid arbitrage opportunities. More specifically,

I(0; X) = V.

It turns out that to find the price of this portfolio (and hence of the claim), we only need to
repeatedly and recursively apply the principles of the one-step binomial model. We illustrate
this in a binomial model with T" = 2. First, we need to introduce further notation. We denote
by V,(k) the value of the replicating portfolio of the claim at the node (t, k). Next, we need to
split the tree in Figure 3.3 into two (one-period) subtrees, as shown in Figure 3.4.

u250 <I)(’U,2S()) ung (I)(UdS())

) / i /
\ \

udS() <I>(ud5'g) dQSO (I)(d250)

(a) First subtree (b) Second subtree

Figure 3.4: One-period subtrees

Then, we can apply the principles of the one-period binomial model to compute V;(1) and
V1(0) as follows

V(1) = g (0 ®(2S,) + 0,B(udSy)).
Va0) = e (0 2(0dS) + 0, B(ES;).

178

where g, and g, are the risk neutral probabilities given by

_(1+R)—d
%—W;

_u—(1+R)
Ya=—"—",—a

Thus, we now obtain the one-period binomial tree given in Figure 3.5.

So

dSo | Vi(0)

Figure 3.5: One-period subtree

Finally, using the same idea, we compute the initial price of the portfolio V,(0) as

Vo(0) = o (@) + Vi 0).

Example 3.3. Consider a stock with a current price of S, = 50. The stock’s price is expected
to increase by 10% or decrease by 8% during the next two six-month periods. The risk-free
interest rate is 5% compounded annually. Compute the price of a 1-year European put option
with a strike price of 55.

Solution.

sO <- 50
u<-1.1

d <- 0.92
strike <- 55

Risk-free rate for the period of six months
rf <- (1 + 0.05)7(6 / 12) - 1

179

Number of periods
n <- 2

Future stock prices
k <- 0:n

s <—-uk *x d(n - k) * s0O
s

[1] 42.32 50.60 60.50

Value of the contingent claim at maturity
phi <- pmax(strike - s, 0)
phi

[1] 12.68 4.40 0.00
Risk-neutral probability qu

qu <- (1 + rf - d) / (u - d)
qu

[1] 0.5816393

Price of the option
vu <- (qu * phi[3] + (1 - qu) * phi[2]) / (1 + rf)
vu

[1] 1.796424

vd <= (qu * phi[2] + (1 - qu) * phi[1]) / (1 + rf)
vd

[1] 7.674504

vO <= (qu * vu + (1 - qu) * vd) / (1 + rf)
vO

[1] 4.153022

180

We now give the general binomial algorithm.

Proposition 3.1. Consider a claim X = ®(Sy). Then V,(k) can be computed recursively as

Vi) = oy Vi 1)+ 0V ().

V(k) = ®(ukdT=*S,).

In other words, the binomial algorithm consists of the following steps:

1. Generate the tree of stock prices.
2. Calculate the value of the claim at each final node.
3. Calculate the claim values sequentially at each preceding node.

To generate the tree of stock prices (1.), we can employ the following code:

build_tree <- function(sO, u, d, n) {
tree <- matrix(0, nrow = n + 1, ncol =n + 1)
for (t in 1:(n + 1)) {
k <- 0:(t - 1)
tree[t, 1:t] <- uk * d°(t - 1 - k) * s0
}

BIEEE

If we consider the same input data as in Example 3.3, we obtain the following tree

tree <- build_tree(50, 1.1, 0.92, 2)
tree

[,11 [,2]1 [,3]
[1,] 50.00 0.0 0.0
[2,] 46.00 55.0 0.0
[3,] 42.32 50.6 60.5

With the above tree at hand, we can evaluate the claim at the final nodes (2.) by simply taking
the last row of the matrix. For instance, in our example, we have the following values of the
claim at the final nodes:

pmax(strike - tree[nrow(tree),], 0)

181

[1] 12.68 4.40 0.00

Finally, for the recursive computations (3.) we can use the following code:

value_bin_mod <- function(qu, rf, tree, strike) {
val tree <- matrix(0, nrow = nrow(tree), ncol = ncol(tree))
val_tree[nrow(tree),] <- pmax(strike - tree[nrow(tree),], 0) # European put
for (t in (nrow(tree) - 1):1) {
for (k in 1:t) {
val_treel[t, k] <- ((1 - qu) * val_treel[t + 1, k]
+ qu * val_treel[t + 1, k + 1]) / (1 + rf)
}
}
val_tree

}

Applying the above code to our example we obtain:

opt_price <- value_bin_mod(qu, rf, tree, strike)
opt_price

[,1] (.21 [,3]
[1,] 4.153022 0.000000
[2,] 7.674504 1.796424
[3,] 12.680000 4.400000

O O O

Note that the price at time t = 0 is given by the entry [1, 1], that is,

opt_pricel[1, 1]

[1] 4.153022

Remark. The above code for performing the binomial algorithm was presented using a European
put option as an example. However, it can be easily modified to price any other simple derivative.

It turns out that Proposition 3.1, implies the following risk-neutral valuation formula.

Proposition 3.2. The arbitrage-free price att = 0 of a claim X with maturity T is given by

vy 1 ~(T\ & 1t k T—k
I(0; X) = m; (k:) Tudg " P(Seutdm).

182

Thus, an alternative solution to Example 3.3 using the above result is the following;:

pi0 <- sum(choose(n, k) * quk * (1 - qu)"(n - k) * phi) / (1 + rf)"n
pio

[1] 4.153022

Sometimes, instead of u and d a volatility of the stock o is provided. This stock’s volatility is
defined as the annualized standard deviation of the stock return. Luckily, given the volatility
o, we can calculate u and d by using

u=exp(oc/n) and d=exp(—oc/n)=1/u,

where n is the number of intervals over one year. One can show that when n tends to infinity,
the binomial model converges to the Black-Scholes model.

R packages for the binomial model

Several R packages have implementations for the binomial model. However, here we will
employ the derivmkts R package. Unfortunately, only important examples, such as call and
put options, are available. Thus, the previous analysis is highly relevant when dealing with less
standard derivatives. We will come back to more complex examples shortly, but first, let us
illustrate the use of derivmkts.

library(derivmkts)

To compute prices of European (and American) call and put options, we use the function
binomopt (). Using this function, let us solve Example 3.3. We need to note the following about
binomopt (): the risk-free rate (r) must be an annual continuously compounded rate. To price
a European option, we need to change the default value of the argument american = TRUE to
FALSE. By default, the function works with volatilities; hence we need to use specifyupdn =
TRUE to indicate that we will provide w and d through the arguments up and dn. We describe
the rest of the arguments needed in the following code:

binomopt (
s = 60, # Initial stock price
k = 65, # Strike price
r = log(l + 0.05), # Continuously-compounded risk-free rate
tt = 1, # Time to maturity
d = 0, # Dividends, in our case, we do not work with dividends, hence O.
nstep = 2, # Number of periods

183

american = FALSE, # To indicate European

putopt = TRUE, # To indicate a Put option

specifyupdn = TRUE, # Tells the function to use u and d
up = 1.1, # Value of u

dn = 0.92 # Value of d

price
4.153022

Moreover, derivmkts contains the function binomplot (), which plots the development of the
stock price and shows graphically the probability of being at each node (represented as the
area of the circle at that price). The following is the plot for our example:

binomplot (
s =50, k =55, r = log(1 + 0.05), tt = 1, d = 0, nstep = 2,
american = FALSE, putopt = TRUE, specifyupdn = TRUE, up 1.1, dn = 0.92,
v = 0, # A value of the volatility must be provided, although not used

plotarrows = TRUE, # Plots arrows that connect the nodes of the tree
plotvalues = TRUE # Plots the values of the stock prices at each node
)
European Put
Stock = 50, Strike = 55, Time = 1 year, Price = 4.153
60.5
o _|
©
Q
L Lo
— o
e 50.6
g B
®
o _|
< 42.3
I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Binomial Period

Note that a horizontal line with the strike value is included in the plot. This can also be
omitted by using drawstrike = FALSE. Finally, the green and red colors indicate whether or

184

not the option is optimally exercised there (green if yes, red if no). However, this is mainly
relevant when working with American options.

We finish our discussion of the binomial model with the following more complicated example,
which cannot be solved with the functions in derivmkts. Hence the importance of our early
discussion.

Example 3.4. The price of a stock is currently 40. Over each of the following three 5-month
periods, it is expected to go up by 10% or down by 5%. The risk-free interest rate is 6% per
annum with continuous compounding.

1. Use a three-step binomial model to find the value of a European style derivative that
pays off X = [max(K — S, 0)]?, where S; is the stock price in 15 months and K = 44.

2. Use a three-step binomial model to find the value of a European-style derivative that
pays off X = min(S2, K), where Sy is the stock price in 15 months and K = 2000.

Solution. We will solve 1. using Proposition 3.1 and 2. using Proposition 3.2:

1.

s0 <- 40
kk <- 44
u<-1.1
d <- 0.95
rf <- exp(0.06 * 5 / 12) - 1

tree <- build tree(sO, u, d, 3)
tree

(11 [,21 [,3]1 [,4]
[1,] 40.000 0.00 0.00 0.00
[2,] 38.000 44.00 0.00 0.00
[3,] 36.100 41.80 48.40 0.00
[4,] 34.295 39.71 45.98 53.24

qu <- (1 +rf -d) / (u-d)
qu

[1] 0.5021008

185

value_bin_mod <- function(qu, rf, tree, kk) {

val_tree <- matrix(0, nrow = nrow(tree), ncol = ncol(tree))
val_tree[nrow(tree),] <- (pmax(kk - treel[nrow(tree),], 0))"3 # Given claim
for (t in (nrow(tree) - 1):1) {

for (k in 1:t) {

val_tree[t, k] <- ((1 - qu) * val_treel[t + 1, k]
+ qu * val_treelt + 1, k + 1]) / (1 + rf)

}
}
val_tree

}

opt_price <- value_bin_mod(qu, rf, tree, kk)
opt_price

[,1] [,21 [,3] [,4]
[1,] 132.0264 0.00000 0 0
[2,] 253.1042 18.61830 0 0
[3,] 482.5491 38.34034 0 0
[4,] 914.0851 78.95359 0 0

Thus, the price of the option is

opt_price[1, 1]

[1] 132.0264
2.

n <- 3
k <- 0:n

Prices after 15 months
s <-uk *x d(n - k) * s0O
s

[1] 34.295 39.710 45.980 53.240

186

Value of the contingent claim at maturity
phi <- pmin(s~2, 2000)
phi

[1] 1176.147 1576.884 2000.000 2000.000

pi0 <- sum(choose(n, k) * qu'k * (1 - qu)"(n - k) * phi) / (1 + rf)"n
pi0O

[1] 1614.563

3.3 The Black and Scholes model

The binomial model discussed in the previous section is a discrete-time model: the stock price
changes at the end of each time period. Another commonly used model for option pricing is
the Black-Scholes model, which assumes that the stock price moves continuously on time. The
assumptions behind the Black-Scholes model are deep, and in fact, an entire course can be
dedicated to the development of this model. In this course, it is sufficient for you to know how
to price the options using simulations and the closed-form Black-Scholes formula. We start
with a review of the Brownian motion, which will be used to describe the price movements of a
stock.

3.3.1 Preliminars: Brownian motion

Definition 3.5 (Standard Brownian motion). A standard Brownian motion is a stochastic
process W = (W (1))~ satisfying:

1. W(0) = 0.

2. The process has independent increments, i.e., for any 0 < t; <ty < -+ < t,, W(ty) —
W(ty),..., W(t,) — W(t,_,) are independent random variables.

. For s <t, W(t) —W(s) ~ N(0,t—s).

4. W has continuous trajectories.

w

To generate trajectories of a standard Brownian motion over a time period [0, T], we consider
a “small” time increment 6t > 0. Then, consider the independent increments

W (5t) — W (0),
W (26t) — W (6t).

187

Note that these increments are N (0, 6t) distributed. Moreover, we can compute W (26t) as
W (260t) = (W (20t) — W (dt)) + (W (dt) — W(0)) .

Thus, we can repeat the same logic as above to simulate a whole process trajectory. The
following code implements this idea:

set.seed(1)

delta <- 0.001 # Increment

t <- seq(0, 1, by = delta) # Time interval

w <- rnorm(n = length(t) - 1, sd = sqrt(delta)) # iid normal distributed r.v.s
w <- c(0, cumsum(w)) # Cumulative sum - O is the initial value

plot(t, w,

type = "1",

xlab = "Time",

ylab = "W(t)",

main = "Simulated trajectory of a standard Brownian motion",
)

Simulated trajectory of a standard Brownian motion

©
<
(QV
= © |
= o
o'_
|
©
9 [[[[[[
0.0 0.2 0.4 0.6 0.8 1.0
Time

We now modify the code above to generate multiple trajectories:

nsim <- 100 # Number of simulated trajectories

w <- matrix(
rnorm(n = nsim * (length(t) - 1), sd = sqrt(delta)),
nsim, # Each row is one simulated trajectory
length(t) - 1

188

w <- cbind(rep(0, nsim), t(apply(w, 1, cumsum))) # matrix with trajectories
plot(t, wll,], # Plots the first trajectory

type = "1",

ylim = c(-2.5, 2.5),

xlab = "Time",

ylab = "W(t)",

main = "Simulation of standard Brownian motion"

)
apply(wl-1, 1, 1, function(x, t) lines(t, x), t = t) # Plots the remaining trajectories

Simulation of standard Brownian motion

W(t)
0
|

Time

NULL

The standard Brownian motion can be generalized to the arithmetic Brownian motion, which
scales and shifts the former. More specifically, X (¢) is an arithmetic Brownian motion if

X(t) = pt + oW (t)

where W (t) is a standard Brownian motion and p € R and o > 0. Here, p is called the drift,
and o is called the wolatility of the process. Moreover, note that for s < t, X(t) — X(s) ~
N(u(t—s),0%(t—s)). There are two straightforward ways to simulate the arithmetic Brownian
motion. One would be to simulate a standard Brownian motion and then use the relationship
above. The second, and perhaps easier to modify in our code above, is to generate independent
N (udt,o?6t) random variables. The next code implements the later:

189

mu <- 2

sigma2 <- 0.2

nsim <- 100

X <- matrix(
rnorm(n = nsim * (length(t) - 1), mean = mu * delta, sd = sqrt(delta * sigma2)),
nsim,
length(t) - 1

)

X <- cbind(rep(0, nsim), t(apply(x, 1, cumsum)))

plot(t, x[1, 1,

type = "1",

ylim = c(-1, 3),

xlab = "Time",

ylab = "X(t)",

main = "Simulation of arithmetic Brownian motion"

)
apply(x[-1, 1, 1, function(x, t) lines(t, x), t = t)

Simulation of arithmetic Brownian motion

X(0)
1
|

Time
NULL

Note that the arithmetic Brownian motion can take negative values. Hence, using it for modeling
stock prices is questionable. Instead, we now introduce the so-called called geometric Brownian
motion, which can only take nonnegative values. More precisely, a geometric Brownian motion
S(t) is a stochastic process of the form

S(t) = 5(0) exp (X(t)) = S(0) exp (ut + oW(2)) ,

190

where S(0) > 0 is the starting value, and X (¢) is an arithmetic Brownian motion with drift
1 and volatility o. The following code generates some trajectories of this process using the
previous implementation:

sO <- 2
s <- s0 * exp(x)
plot(t, sl[1, 1,

type = "1",

ylim = c(0, 40),

xlab = "Time",

ylab = "S(t)",

main = "Simulation of geometric Brownian motion"

)
apply(s[-1, 1, 1, function(x, t) lines(t, x), t = t)

Simulation of geometric Brownian motion

o _
=
o _|
(90}
Z o _|
") N
o _|
—
o p—
| | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
Time
NULL

Note that in particular, S(¢)/S(0) ~ LN (ut,c?t), and more generally, for s < t, S(t)/S(s) ~
LN (u(t — 5),0(t — 5)).

Finally, one can show that a geometric Brownian motion of the form

2

S(t) = S(0) exp ((M - ‘;) t+ aW(t)) ,
satisfies the stochastic differential equation (SDE)
dS(t) = uS(t)dt +aS(t)dW(t) .

191

3.3.2 The Black and Scholes formula

As in the binomial model, we consider two assets: a risk-free asset with prices B(t) and a stock
with prices S(t). The Black—Scholes model assumes that the prices of these two assets satisfy

dB(t) = rB(t)dt,
dS(t) = aS(t)dt + o S(t)dW (t),

I
=

where 7, a;, and o are deterministic constants and W is a standard Brownian motion. Next, we
consider a simple contingent claim of the form

X = &(S(T)).

It can be shown that the arbitrage-free price II(0; X) of this simple claim X is given by the
risk-neutral evaluation formula

(0 X) = " TER [9(S(T)] (3.1)
where the behavior of S under @ is described by the SDE
dS(t) =rS(t)dt + oS(t)dW(t),

whose solution is a geometric Brownian motion. In particular, we have that S(7') is explicit
and given by

S(T) = S(0) exp ((r - "22) T+ JW(T)) . (3.2)

When considering a European call option, that is, ®(z) = max(z — K,0), Equation 3.1 and
Equation 3.2 lead to the famous Black—Scholes formula.

Proposition 3.3. The price of a European call option C(0) with strike price K and time of
maturity T is given by
C(0) = S(0)N(d,) — Ke"TN(d,), (3.3)
where N is the cumulative distribution function for the N(0,1) distribution and
1 S (O)) 1
dy = —— (1og (22 +<r+—02>T ,
LoVT (® (K 2
d2 — dl - Uﬁ

192

Similarly, the price of a European put option P(0) with strike price K and time of maturity 7'
is given by
P(0) = Ke "N(—dy) — S(0)N(—d,),

with d; and d, as above.

In R, the Black—Scholes formula to price European call and put option is available in the
derivmkts package under the functions bscall() and bsput (), receptively. We illustrate their
use with an example.

Example 3.5. Consider a European call option over a stock with a current price of S(0) = 50
and volatility of 0.25. Moreover, the risk-free interest rate with continuous compounding is
6% per annum, the strike price is 45, and the option’s time to maturity is 6 months. Find the
price of the option.

Solution.

s0 <- 50
sigma <- 0.25
rf <- 0.06

maturity <- 6 / 12

strike <- 45

d <- 0 # No dividends

bscall(s0, strike, sigma, rf, maturity, d)

[1] 7.381939

Note that Equation 3.1 suggests that we can approximate an option’s price by simulating S(T")
values. Moreover, the required simulation can be done easily using the function simprice() in
derivmkts. For example, for the previous example, we can approximate the price as follows:

set.seed(1)
st <- simprice(sO, sigma, rf, maturity, d, trials = 10000, periods = 1)
exp(-rf * maturity) * mean(pmax(st[st$period == 1,]$price - strike, 0))

[1] 7.377834

193

3.3.3 Greeks

Greeks represent sensitivities of a derivative value to changes in the underlying parameters used
to determine its price. More specifically, if we denote by V be the price of a derivative, which
depends on the underlying stock price .S, a risk-free rate r, a volatility o, and with maturity 7,
then the Greeks are defined as follows:

Delta (A): Measures the rate of change of the option price with respect to changes in the
underlying stock price.

v

A=_—.
oS

Gamma (I"): Measures the rate of change in A with respect to changes in the underlying stock
price.

_ v _oa
952 98

Vega (v): Measures sensitivity with respect to changes in the volatility o.

_ v
- do’

v

Rho (p): Measures sensitivity with respect to changes in the risk-free interest rate.

oV

P—E-

Theta (©): Measures the sensitivity of the value of the derivative to the passage of time.

ov

Elasticity or Lambda (A): Is the percentage change in option value per percentage change in
the underlying price (a measure of leverage).

Psi (1): Measures the rate of change in V with respect to changes in the underlying dividend
yield ().

194

oV

Y=

In particular, for a European call option with strike price K and time of maturity 7, we have
the following explicit expressions:

—rKe "'N(d,).

The derivmkts R package allows us to compute the Greeks for a financial derivative via the
function greeks(). For instance, the Greeks for the option in Example 3.5 can be computed

as follows:

greeks(bscall(s0, strike, sigma, rf, maturity, d = 0))

Premium 7
Delta 0
Gamma 0.
Vega 0
Rho 0
Theta
Psi

Elasticity 5.

bscall

.38193911
.80347605

03134062

.09793950
.16395932
.01209863
.20086901

44217476

Furthermore, greeks () accepts vector inputs, which allows us to visualize the Greeks.

s <- seq(.5, 80, by =
call_greeks <- greeks(bscall(s, strike, sigma, rf, maturity, d = 0))
for (i in rownames(call_greeks)) {

plot(s, call_greeks[i,], main =

}

.5)

paste(i), ylab = i, type = "1", col = "red")

195

Premium

T
0¢

T T
0c OT

wniwald

T
0

80

60

40

20

Delta

80

7’0

elled

00

80

60

40

20

Gamma

T T T
¥0'0 200

ewiwes

T

I
000

80

60

40

20

Vega

T T T T T
¢T’'0 800 ¥0'0 000

ebap

80

60

40

20

196

Rho

T
0c'o

T
0T'0

oy

T
000

80

60

40

20

Theta

T
0000

1T
900°0-

EPRYL

T
¢10'0-

80

60

40

20

Psi

00

20—

Isd

T

¥'0-

80

60

40

20

Elasticity

0€

T T T I
0c 0T S

Ayonse|3

80

60

40

20

197

4 R for Insurance

4.1 The collective risk model

Let S be a random variable representing the aggregate claim amount (or the total amount of
claims) of an insurance portfolio of independent risks over a fixed period. Let N be a random
variable representing the number of claims (or frequency) in the portfolio over that period, and
X1, X5, ... be a sequence of iid random variables denoting the claim sizes (or severities), with
common element X > 0. Then, S is given as the random sum

S: X1+X2++XN, N>0,
0, N=0.

In order to derive several properties of the model above, the collective risk model assumes
that the number of claims and the claim sizes are independent, that is, N and X, X,, ... are
mutually independent.

In the following, the probability mass function (pf) of N is denoted by p,, = P(N = n), and the
probability density function (pdf) and cumulative distribution function (cdf) of X are denoted
by fx(z) and Fy(x) = P(X < x), respectively.

We now present some properties of the aggregate loss S. We start with the moment generating
function (mgf) Mg(t), which is given by

Mg(t) = Elexp(tS)] = My (In Mx(t)) ,

where My (t) and My (t) are the mgf’s of N and X, respectively.

Next, the mean and variance of S are

and
Var(S) = E[N]Var(X) + Var(N)E?[X].

Finally, the distribution function Fg of S is given by

n=0

198

where F§" is the cdf of the n-fold convolution of the r.v. X defined as

1 n=20
*12 — (z=0) » ’
F () {P(X1+X2+...+Xn§x), n=12 ..,

and 1, denotes the indicator function over a set A.

When X is continuous, differentiating Fg with respect to = yields the following expression for
the density function fg of S

fS(x>:an ;{n(w)’ x>0,
n=0

where f{" is the pdf of the n-fold convolution of the random variable X. An analogous
expression for the pf of .S can be obtained in the case of X discrete.

Both the cdf and the pf (pdf) of the n-fold convolution of X can be obtained recursively as
given in the following proposition.

Proposition 4.1.

(i) If X is a discrete random variable, then the cdf of the n-fold convolution of X can be
evaluated recursively by the following formula

1(.2?20) s n = 0,
F () = F};@), o n=1, (4.2)
Zy:OfX(y)FX (.’,U—y), 7’L:2,3,...)

while the pf of the n-fold convolution of X can be evaluated recursively by
*T0 < *(n—1
Y@ =D " —y).
y=0

(ii) If X is a continuous random variable, then the cdf of the n-fold convolution of X can be
evaluated recursively by the following formula

Fy(e) = [@ o gy,
0
while the pdf of the n-fold convolution of X can be evaluated recursively by

Mp) = : *(nfl)m— dy .
(@) /Ofx(y)fx (z — y)dy

199

4.1.1 Discretization of claim amount distributions

Some numerical techniques to compute the aggregate claim amount distribution require a
discrete arithmetic claim amount distribution, that is, a distribution defined on 0, h, 2h, ... for
some step (or span, or lag) h. The actuar package provides the function discretize() to
discretize continuous distributions. More specifically, given F(x), the cdf of the distribution
to discretize on some interval (a,b), the discretize() function supports the following four
discretization methods (we denote by f, the pf at x of the discretized distribution).

1. Upper discretization, or forward difference of F(x):
f.=Fx+h) —F(x), z=a,a+h,..,b—nh.

The discretized cdf is always above the true cdf.

2. Lower discretization, or backward difference of F'(x):

f= F(a), r=a,
T | Fle)—F(x—h), z=a+h,..,b.
The discretized cdf is always under the true cdf.

3. Rounding of the random variable, or the midpoint method:

[F(a+h/2), r=a,
T =\ Fla+h/2) = Flx—h/2), x=a+h,...b—h.

The true cdf passes exactly midway through the steps of the discretized cdf.

4. Unbiased, or local matching of the first moment method:

E[XAa]—E[XAa+h]

+1—F(a), z=a,
fac = 2E[XAx]— E[XNz—h]=E[XAz+h] 5 a <z < ba

R
E[X/\b]—f[X/\b—h] 14+ F(),

r=0b,

where ¢ A d denotes min(c,d). The discretized and the true distributions have the same
total probability and expected value on (a,b).

Example 4.1. Find the four discretizations of a Gamma(2,1) distribution on (0, 10) with a
step of 0.5 and plot their cdf against the original cdf.

Solution.

200

library(actuar)

fx_upper <- discretize(pgamma(x, 2, 1),
method = "upper",

from = 0,
to = 10,
step = 0.5

)

x <- seq(0, 10 - 0.5, 0.5)
plot(stepfun(x, diffinv(fx_upper)), pch = 19, col = "blue", main = "Upper")
lines(x, pgamma(x, 2, 1))

Upper
[o0]
@
< _
— <
g
oS _|
© | I I I I I
0 2 4 6 8 10
X

fx_lower <- discretize(pgamma(x, 2, 1),
method = "lower",
from = 0,
to = 10,
step = 0.5
)

x <- seq(0, 10, 0.5)

plot(stepfun(x, diffinv(fx_lower)), pch = 19, col = "blue", main = "Lower")
lines(x, pgamma(x, 2, 1))

201

Lower

[o0]
Q-
- |
= < |
o
o _|
© | | | | | |
0 2 4 6 8 10
X

fx_round <- discretize(pgamma(x, 2, 1),
method = "rounding",
from = O,
to = 10,
step = 0.5

x <- seq(0, 10 - 0.5, 0.5)
plot(stepfun(x, diffinv(fx_round)), pch = 19, col = "blue", main = "Rounding")
lines(x, pgamma(x, 2, 1))

Rounding
[o0]
Q-
- _
=%
o
o _|
o | | | | | |
0 2 4 6 8 10
X

202

fx_unbi <- discretize(pgamma(x, 2, 1),

method = "unbiased",

from = 0,

to = 10,

step = 0.5,

lev = levgamma(x, 2, 1) # Computes E[min(X, a)]

)

x <- seq(0, 10, 0.5)

plot (stepfun(x, diffinv(fx_unbi)), pch = 19, col = "blue", main = "Unbiased")
lines(x, pgamma(x, 2, 1))

Unbiased
00]
Q4
< _
= <
3 -
o _|
© | I I I I I
0 2 4 6 8 10
X

4.1.2 Calculation of the aggregate claim amount distribution

In this section, we present various methods to compute or approximate the cdf of the aggregate
claims amount S. These methods are implemented in the actuar package through the function
aggregateDist ().

Panjer’s recursion

The first method that we present is the well-known Panjer’s recursion. This method requires
the severity distribution to be discrete arithmetic on 0,1, 2, ..., m for some monetary unit and
the frequency distribution to be in the (a,b,0) or (a,b,1) class of distributions. Recall that N
is in the (a,b,0) class (resp. in the (a,b,1) class) if its pf p, can be written recursively in the
following form

b
P, = <a+ —) Dp_1, m=1,23, ..,
n

203

resp.
b
pn: <a+ﬁ>pn,1, n:2,3,... .

Many known distributions belong to the (a,b,0) and (a, b, 1) classes. For instance, Table 4.1
shows the most important examples in the (a,b,0) class.

Table 4.1: Distribution in the (a,b,0) class

Distribution of
N Parameters a

b Do
Poisson A>0 0 A exp(—A)
Binomial neN,pe(0,1) —p/(1—=p) (n+1)p/(1—p) O
Geometric pe€(0,1) 1—p 0 D
Negative reN,pe(0,1) 1—p r—1)(1-=p) p"
Binomial

Under the above setting, the pf of the aggregate claims can be calculated recursively based on
the following theorem.

Theorem 4.1. Let N be a random variable in the (a,b,0) (resp. (a,b,1)) family of distributions.
Then, the pf fg of the aggregate claims is given by

folz) = PN(fX<O))> =0,
s B 1— an Zz/\m (a‘—i_%)fX(y)fS('x_y)? $:1,2,...,
resp.
folz) = Pn(fx(0)), z=0
ST\ (00— @+ 0po) fx @) + 0T (a+) Fx @) fsle—1)) =120,

where Py(t) = E(tV) is the probability generating function (pgf) of N.

To perform Panjer’s recursion in R, we can use the function aggregateDist () with argument
method = "recursive". Let us give a concrete example. We consider S such that IV is Poisson
distributed with mean 10 and X ~ Gamma(2,1). Then, we approximate the cdf of S by first
discretizing the gamma distribution on (0, 22) with the unbiased method and a step of 0.5 and
then using the recursive method in aggregateDist ().

fx <- discretize(pgamma(x, 2, 1),
method = "unbiased",
from = 0, to = 22, step = 0.5,
lev = levgamma(x, 2, 1)

204

)

Fs <- aggregateDist("recursive",
model.freq = "poisson",
model.sev = fx, lambda = 10,
x.scale = 0.5

)
Fs

Aggregate Claim Amount Distribution
Recursive method approximation

Call:
aggregateDist (method = "recursive", model.freq = "poisson", model.sev = fx,

x.scale = 0.5, lambda = 10)

Data: (143 obs.)
x[1:143] = 0, 0.5, 1, ..., 70.5, 71

The above code returns an object of the class aggregateDist from which we can obtain
information regarding S. Firstly, we can use directly such an object to evaluate the cdf of S:

Fs(20)

[1] 0.5470771

Note that the support can be obtained with the knots() function:
head (knots(Fs))

[1] 0.0 0.5 1.0 1.5 2.0 2.5

Moreover, we can apply other functions to the above object to obtain different quantities or
even plots. For instance, summary () provides some basic information on S.

summary (Fs)

Aggregate Claim Amount Empirical CDF:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 14.50000 19.50000 19.99994 25.00000 71.00000

205

To plot the approximated cdf of S, we can use the plot () function:

plot(Fs, do.points = FALSE, verticals = TRUE)

Aggregate Claim Amount Distribution
Recursive method approximation

(o0]
Q
© |
2 <
LL S
o |
o | | | |
0 20 40 60
X

We will illustrate additional useful functions with the other approximation method presented
next.

Exact calculation by numerical convolutions

This method consists of using directly Equation 4.1, and it can be accessed using the argument
method = "convolution" in the aggregateDist() function. However, it only works with
discrete severity models and computes the distribution of the convolution using Equation 4.2.
This method is computationally demanding, and hence, it only works well with relatively small
problems. Nevertheless, an advantage is that any discrete distribution can be employed for the
claim number. We now present a concrete example: As before, we consider a Gamma(2,1)
distribution for the severities, but now consider a Bin(10,0.4) distribution for the number of
claims.

fx <- discretize(pgamma(x, 2, 1),
method = "unbiased",
from = 0, to = 22, step = 0.5,
lev = levgamma(x, 2, 1)
)
fn <- dbinom(0:10, 10, 0.4) # We require a vector of claim number probabilities
Fs <- aggregateDist("convolution",

206

model.freq = fn,
model.sev = fx,
x.scale = 0.5

)
Fs(10)

[1] 0.7282019

Once the object above was created, we can again find different quantities of interest. For
instance, the density can be found using the diff () function:

fs <- diff(Fs)
head(fs)

[1] 0.007499618 0.006946915 0.011704075 0.016188003 0.020890637 0.025716230

Normal approximation

Using the CLT, the cdf of S can be approximated as

Fy(z) ~ ® (‘“S) ,

Os
where pug = E[S], 0% = Var(S), and ® denotes the cdf of a standard normal. However, this
approximation ignores the tail behavior of the distribution, which may be problematic when we
are interested in the tails. Moreover, we require the existence of at least the second moment.
To use this method in the aggregateDist () function, we need to pass the argument method
= "normal" and a vector with the moments of S in the order (ug,0%). For instance,

Fs <- aggregateDist("normal", moments = c(6, 2))
Fs(5)

[1] 0.2397501

Note that the above cdf evaluation can also be computed simply as

pnorm(5, mean = 6, sd = sqrt(2))

[1] 0.2397501

207

Normal Power Il approximation

This method approximates the cdf of S by

3 9 6 r—
Fs@) m @ |- 4[5 +1+—"Hs]
Vs Vs Ys Os

where vg = E[(S — pg)?]/o%. The approximation is valid for > pg only and performs
reasonably well when g < 1. This method is implemented in the aggregateDist () function
and accessible through the argument method = "npower". We require to give a vector with
(ftg, 0%, 7g), in that order. For example,

Fs <- aggregateDist("npower", moments = c(6, 2, 0.5))
Fs(7) # Accesible only for x > mu_S

[1] 0.7716457

Simulation

The last method we introduce here consists of simulating a sample from .S and then approxi-
mating Fg by the empirical cdf

1™
Fn(‘r) = E Z 1(Sj§£t) .
=1

The above can be performed using the aggregateDist () function with the argument method
= "simulation". For instance, for S with N Poisson distributed with mean 10 and X ~
Gamma(2,1), we have

set.seed(1)
model_freq <- expression(data = rpois(10))
model_sev <- expression(data = rgamma(2, 1))
Fs <- aggregateDist("simulation",

nb.simul = 2500,

model_freq, model_sev

)

We can then compute different quantities related to S. For instance, the mean and quantiles
can be computed using the mean() and quantile() functions:

208

mean (Fs)

[1] 20.13251

quantile(Fs)

259, 509, 75% 90% 95% 97.5Y 99Y% 99.5Y%
14.38965 19.37523 25.25919 30.98962 33.85464 36.24842 39.92677 43.65289

Other relevant quantities in insurance applications are the Value at Risk (VaR) and the
Conditional Tail Expectation. Recall that the VaR of level a € (0,1), VaR,, is the quantity
satisfying

P(S <VaR,) = «,
and that the conditional tail expectation of level o, CTE,_, is given by

CTE, =E[S|S > VaR,].

The above quantities can be computed easily using the VaR() and CTE() functions in the
actuar package.

VaR (Fs)

90% 95% 99%
30.98962 33.85464 39.92677

CTE(Fs)

90% 95% 99%
34.84512 37.52703 44.26966

In fact, aggregateDist () implicitly calls the function simul () to perform the simulation. We
can use the later directly as follows:

sim_s <- simul (2500,

model.freq = expression(rpois(10)),
model.sev = expression(rgamma(2, 1))

209

This creates an object containing the severities, frequencies, and aggregate claim amounts. The
latter, representing S, can be obtained using the aggreate () function.

s_sample <- aggregate(sim_s)
summary (s_sample[1, -1])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 14.45 19.03 19.87 24.65 52.91

hist(s_sample[l, -1], freq = F, breaks = 20, main = "Simulation of S", xlab = "x")

Simulation of S

Density

0.00 0.02 0.04
I

X

Alternatively, the simulation of S can be performed with the following code:

s_sim <- function(n, distr, ...) {
sum(distr(n, ...))
}
set.seed(1)
N <- rpois(2500, 10)
s_sample <- sapply(N, s_sim, distr = rgamma, shape = 2, rate = 1)
summary (s_sample)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.8999 14.3967 19.3932 20.1325 25.2531 51.6455

210

hist(s_sample, freq = F, breaks = 20, main = "Simulation of S", xlab = "x")

Simulation of S

. L
S — |
> °]
5 _
o g]
o s
o
S -
o [[[[[|
0 10 20 30 40 50
X

4.2 Ruin theory

In the previous section, we modeled the total claims over a fixed period in an insurance portfolio.
In this section, we are interested in describing the evolution of the insurance company’s surplus
over many periods. In particular, we want to find the probability that the surplus becomes
negative, in other words, the probability that the ruin of the insurance company occurs. Finding
this ruin probability is the main topic of ruin theory.

4.2.1 The surplus process

In classical ruin theory, an insurer’s surplus at a fixed time ¢ > 0 is determined by three
quantities: the amount of the surplus at time ¢ = 0 (also called initial surplus), the amount of
premium income received up to time ¢, and the amount paid out in claims up to time t. More
specifically, let U(t) denote the surplus of an insurance company at time ¢, ¢(t) denote the
premium received up to time ¢, and S(¢) denote the aggregate claims paid up to time t. If u is
the initial surplus at time ¢ = 0, then U(t) is given by

U(t) = u+c(t) — S(t).

211

As previously mentioned, the ruin of the insurance company occurs when the surplus becomes
negative. Thus, the probability of ruin in infinite time is defined as

Y(u) = P(U(t) <0 for some t > 0).

We now make further assumptions in the surplus process that will allow us to compute (or
approximate) the ruin probability. First, we assume that the premium income is continuous
over time and that the premium income in any time interval is proportional to the interval
length. More specifically, ¢(t) is given by

c(t) = ct,

where ¢ > 0 is a constant rate. Next, we assume that the total amount claimed at time ¢ > 0,
S(t), is of the form

where N(t) denotes the number of claims up to time ¢ and X; denotes the amount of claim
j. Note that we follow the convention that S(¢) = 0 if N(¢) = 0. Furthermore, we assume
that X, X,, ... are iid random variables, which are also independent of N (t). We now require
a specification for the claim number process N(t). We start by recalling the definition of a
counting process.

Definition 4.1. A stochastic process {N(t)},> is called a counting process if it satisfies the
following properties:

i) N(0)=0.
ii) If s <t then N(s) < N(t).
iii) N(t) € N for all £ > 0.

Intuitively, a counting process N(t) counts the number of events that appear in the time
interval (0,t]. In what follows we denote by T}, T, ... the jump times of N(t), that is, T} =
inf{t > 0: N(t) > k} for all k € N.

In classical ruin theory, it is common to assume that {N(t)},-, is a Poisson process. In fact,
in such a case, the model is often referred to as the Cramer-Lundberg model or classical risk
model. We now present the definition of the Poisson process.

Definition 4.2. A counting process {N(t)};- is called a Poisson process with rate A > 0 if:

i) {N(¢)} has stationary and independent increments.
ii) P(N(h)=0)=1—Ah+o(h) as h — 0.
iii) P(N(h) =1) = Ah+o(h) as h — 0.

We now give some alternative definitions of the Poisson process.

212

Proposition 4.2. Let {N(t)};~o be a counting process. The following are equivalent:

i) {N(t)} is a Poisson process with rate A > 0.
it) {N(t)} has independent increments and N (t) ~ Pois(At) for all t > 0.
i17) The interarrival times {T}, —T),_, : k > 1} are independent and exponentially distributed
with mean 1/\.

In what follows, we denote the interarrival times by W, =T, —T}_,. Note that, in particular,
iii. implies that a Poisson process is a particular case of a remewal process.

Definition 4.3. A counting process {N(t)};-q is called an ordinary renewal process if its
interarrival times {W}, : k > 1} are iid.

When {N(t)},-, is a renewal process, the model is called renewal risk model or Sparre Andersen
model.

To study the ruin probability 1(u), we require further assumptions regarding the premium rate
¢ > 0. First, one can show that

P(u)=1 <<= E[cV—-X]<O0.
Thus, in order to avoid ruin with probability one, we assume that

¢ > E[X]/E[W],

which is known as the net profit condition. Note that in the classical risk model (i.e., W ~
Exp()\)), the net profit condition reads as

¢ > AE[X],

which implies that
ct > E[S(t)],

that is, the premium income is above the expected value of aggregated losses for any time ¢ > 0.
In such a case, c is typically described in terms of a security loading 6 > 0 such that

c=(1+0)AE[X].
Finally, one can show that under the net profit condition

Y(u) >0 as u— 0.

In what follows, we assume that the net profit condition is satisfied.

213

4.2.2 The adjustment coefficient

The quantity known as the adjustment coefficient is a valuable tool in risk theory that allows
us to find a bound for the ruin probability. More specifically, the adjustment coefficient R is
defined as the smallest strictly positive solution (if it exists) to the Lundberg equation

h(t) = Elexp(tX —tcW)] =1,

where ¢ > 0 satisfies the net profit condition. Under the assumption of independence between
X and W, as in the most common models, the equation can be rewritten as

h(t) = My (t)My(—tc) = 1.

In general, it is not possible to explicitly solve the above equation for R. Usually, one must
resort to numerical methods, many of which require an initial guess about the value of R. An
upper bound of the adjustment coefficient in the classical risk model (there are many) is given
by
R< 2(c — AE[X]) _ 20E[X] .
AE[X72) E[X?]

In R, we can use the adjCoef () function from the actuar package to compute the adjustment
coefficient. We require the following arguments: the two moment generating functions My ()
and My, (t) (thereby assuming independence), the premium rate ¢, and the upper bound of the
support of M (t) or any other upper bound for R. For example, if W ~ Exp(2), X ~ Exp(1)
and the premium rate is ¢ = 2.4, then the adjustment coefficient is

adjCoef (
mgf.claim = mgfexp(x), mgf.wait = mgfexp(x, 2),
premium.rate = 2.4, upper.bound 1

)

[1] 0.1666667

In the above solution, we passed the upper bound for the support of M (t). However, since we
are in the classical risk model setup, we could have also used the upper bound of R described
previously

exp_aux <- function(x) {
x * dexp(x, 1)
}

snd_aux <- function(x) {

214

x"2 * dexp(x, 1)
}
exp_x <- integrate(exp_aux, 0, Inf)$value
exp_x

(11 1

snd_x <- integrate(snd_aux, 0, Inf)$value
snd_x

(11 2

c <- 2.4

lambda <- 2

bound <- 2 * (c - lambda * exp_x) / (lambda * snd_x)
bound

[1] 0.2

R <- adjCoef (
mgf.claim = mgfexp(x), mgf.wait = mgfexp(x, 2),
premium.rate = 2.4, upper.bound

)
R

bound

[1] 0.1666667

As previously mentioned, knowledge of the adjustment coefficient allows computing a bound
for the ruin probability, as described in the following result.

Theorem 4.2 (Lundberg’s inequality). Foru > 0, the ruin probability, 1 (u), has an exponential
upper bound, given by

(u) < exp(—Ru),

where R is the adjustment coefficient.

In our last example, we can then compute a bound for the ruin probability as (assuming
u=3)

215

u <- 3
exp(-R * u)

[1] 0.6065307

4.2.3 Probability of ruin

Explicit calculation of the infinite time probability of ruin is a difficult task except for the
most simple models. For example, if the interarrival times W are Exp(A) distributed (i.e., the
claim numbers are described using a Poisson process) and the claim amounts X are Exzp(f3)
distributed, then

Y(u) = Q\Bexp((ﬁ —Acju), u=>0.

In the model above, although the frequency assumption can be justified, the severity assumption
can hardly be used to describe real-life problems making the model mainly an illustration
tool. Fortunately, other generalizations of the exponential distribution, such as mixtures
of exponentials and Erlang (and, more generally, phase-type distributions), also allow for a
closed-form solution for the ruin probability. The function ruin() of the actuar package
allows computing the ruin probability for such cases. First, one needs to specify the claim
amount and interarrival times models with any combination of “exponential”, “Erlang” (and
“phase-type”). Then, one passes the parameters of each model using lists with components
named after the corresponding parameters of dexp, dgamma (and dphtype). If an argument
weights is provided, the model is a mixture of exponential or Erlang. Let us illustrate first an
exponential /exponential model with premium rate ¢ = 1 (default):

psi <- ruin(
claims = "e", par.claims = list(rate = 5),
wait = "e", par.wait = list(rate = 3)
)
psi(0:10) # Evaluates the ruin probability for initial surplus from O to 10.

[1] 6.000000e-01 8.120117e-02 1.098938e-02 1.487251e-03 2.012776e-04
[6] 2.723996e-05 3.686527e-06 4.989172e-07 6.752110e-08 9.137988e-09
[11] 1.236692e-09

Next, we consider a model with a mixture of two exponentials for the claim amounts, exponential
interarrival times, and premium rate ¢ = 1.5.

216

psi <- ruin(
claims = "e", par.claims = list(rate = c(3, 7), w = c(0.4, 0.6)),

wait = "e", par.wait = list(rate = 3),
pre = 1.5

)

psi(0:10)

[1] 4.380952e-01 5.310603e-02 7.529333e-03 1.070525e-03 1.522149e-04
[6] 2.164303e-05 3.077365e-06 4.375623e-07 6.221582e-08 8.846302e-09
[11] 1.257832e-09

Moreover, we can plot the ruin probability straightforwardly as a function of the initial surplus
using the plot () function as follows:

plot(psi, from = 0, to = 10)

Probability of Ruin

<
o
SN
> o |
o |
o | | | | | |
0 2 4 6 8 10
u

Finally, we consider a model with Erlang claim amounts and exponentials interarrival times:

psi <- ruin(

claims = "E", par.claims = list(shape = 3, rate = 1),
wait = "e", par.wait = list(rate = 3),
pre = 10

)
plot(psi, from = 0, to = 20)

217

Probability of Ruin

o _|
o
= |
= © _|
=35 O
N |
o

4.2.4 Reinsurance

Reinsurance means that the company (the cedent) insures a part of the risk at another insurance
company (the reinsurer). In this subsection, we study how different types of reinsurance can
affect the adjustment coefficient and the probability of ruin. In what follows, we consider the
classical risk model unless it states otherwise.

Let X (> 0) denote the claim amount under a reinsurance-free environment. A reinsurance
arrangement is then defined in terms of a function h(z) with the property 0 < h(z) < x. Here
h(zx) is the amount of the claim x to be paid by the cedent, and x — h(x) is the amount to be
paid by the reinsurer. The most common examples are the following two:

o Proportional reinsurance. h(z) = ax for some a € [0,1]. Also called quota share
reinsurance.

o Excess-of-loss reinsurance. h(z) = min(z, m) for some m € (0, 00), referred to as the
retention limit.

Next, assume that in a reinsurance-free setting, there is a security loading 8 > 0, such that the
premium rate is
(1+0)AE(X).

If we assume that under the reinsurance agreement h, the reinsurer receives a premium rate
determined by a security loading 8, > 0, that is,

(1+ 6,)AE(X — h(X)).

218

Then, the premium rate ¢* for the cedent is

¢t = (14 O)AE[X] — (1 + 0,)AE[X — h(X)].

Furthermore, we require

¢t > AE[h(X)],

which plays the role of our new net profit condition. Thus, the surplus process of the cedent,
{U*(t)}4>0, is given by

N(t)
U'(t) =u+c't— > h(X;), t>0.
j=1
Now, let R, denote the adjustment coefficient under the h reinsurance agreement, meaning
that R, is the unique positive solution to the equation
L= My, x)(t) My (—c"t),

provided that M,y (t) = E[exp(th(X))], exists.

Thus, the insurer’s ultimate ruin probability upper bound is given by
W (u) < exp(—Ryu), u>0,

where 1), is the probability of ruin corresponding to the surplus process {U*(t)};~.

We now study in more detail the proportional and excess-of-loss reinsurance agreements, which
are implemented in the actuar package.

Proportional reinsurance
Under proportional reinsurance, h is given by
h(X)=aX, 0<a<l.

Thus, the relative security loading 6, satisfies the equation

ot = ((1 +0)—(1+6,)(1— a)))\[E[X] :

It follows from the above equation and the net profit condition that

0
1——.
a > 0,

219

In other words, the insurer must retain at least the proportion 1 — 6/6, to avoid ultimate ruin
with probability one.

In this case, the adjustment coefficient R, satisfies the equation

1= M, () My(—c*t) = My (at) My(—c*t).

Moreover, an upper bound of the adjustment coefficient is given by:

2(c* — a\E[X])
By < Aa2E[X?]

We now provide an example, which can be solved using the adjCoef () function.

Example 4.2. Consider the following classical risk model under proportional reinsurance: The
claim amounts are exponentially distributed with mean 1, the Poisson rate is A = 2, and the
safety loadings are § = 0.2 and 8, = 0.3.

a) Find the adjustment coefficient R), if a = 0.75,0.8,0.9, 1.
b) Plot the adjustment coefficient as a function of the proportion a.
¢) Find an upper bound for the ruin probability if a = 0.5 and v = 2.

Solution.
a)

lambda <- 2
theta <- 0.2
thetah <- 0.3

We require a function to compute the premium rate for different values of a
prem <- function(x) {

((1 + theta) - (1 + thetah) * (1 - x)) * lambda
3

We require need a function to computute the mgf of aX for different values of a
mgf_ax <- function(x, y) {

mgfexp(x * y)
b

adj_prop <- adjCoef (mgf_ax,
mgf.wait = mgfexp(x, 2),
premium.rate = prem,

220

upper = 1,
reins = "prop", from = 0, to =1

)

adj_prop(c(0.75, 0.8, 0.9, 1))

[1] 0.1904762 0.1861702 0.1765317 0.1666667
b)

plot(adj_prop)

Adjustment Coefficient
Proportional reinsurance

o
N
o
S
X o
o
(D_]
(@) | | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
X

c)

exp(-adj_prop(0.5) * 2)

[1] 0.6951439

Excess-of-loss reinsurance

Under excess-of-loss reinsurance with retention level m, h is given by

h(X) = min(X,m) .

221

Thus, the relative security loading, 6,,, satisfies the equation
¢ = (14+0)AE[X]— (1 +6,)AE[X — min(X,m)]
= (14 60,)AE[min(X,m)] — (6, — O)AE[X],
with
¢ > AE[min(X,m)].

Further, the adjustment coefficient, R;,, is the solution to the following equation

1= Mmin(X,m) (t)MI/V(_tC*) :
For the computation of M, x) (t), we can use that

Mmin(X,m) (t> = [E[exp(t min(X, m)]

_ / exp(te) fx (x)dz + exp(tm)(1 — Fy(m)) .
0

Nevertheless, the above has closed-form expression in only very particular instances, as is the

case of the example below.

Example 4.3. Consider the following classical risk model under excess-of-loss reinsurance:
The claim amounts are Gamma distributed with shape parameter 2 and rate parameter 2, the
Poisson rate is A = 1, and the safety loadings are § = 0.2 and 6,, = 0.3. Plot the adjustment

coefficient as a function of the retention limit m varying from 0 to 10.

Solution. We first note that for X ~ Gamma(a, \)
/ exp(tz) fx(z)dr = (ﬁ) Fg(m),
| —

where X ~ Gamma(a, A —t). Thus,

prem <- function(x) {
1.3 * levgamma(x, 2, 2) - 0.1
}
mgfx <- function(x, 1) {
mgfgamma(x, 2, 2) * pgamma(l, 2, 2 - x) +
exp(x * 1) * pgamma(l, 2, 2, lower = FALSE)

}

adj_eol <- adjCoef (mgfx,
premium = prem,
upper = 2,
reins = "excess-of-loss",
from = 0, to = 10

)

plot(adj_eol)

222

R(x)

00 01 0.2 0.3

Adjustment Coefficient
Excess—of-loss reinsurance

223

10

References

224

	Preface
	Introduction to R
	Installation
	Installation of R
	Installation of RStudio

	R as a simple calculator
	Logical operators

	R objects
	Assignment
	Data types

	Vectors
	Accessing vector elements
	Operations with vectors

	Matrices, data frames, and lists
	Matrices
	Data frames
	Lists

	Functions
	Packages
	Control Statements
	Conditional statements
	Loop statements

	Vectorized operations
	Reading and writing data
	Working directory
	Writing data
	Reading data

	R for Statistical Inference
	Descriptive statistics
	Visual tools

	Probability distributions
	Tranformations
	Law of large numbers and central limit theorem

	Parametric inference
	Maximum likelihood estimation
	Adequacy of the fit
	Other estimation methods

	Multivariate distributions
	Multivariate normal distribution
	Copulas
	Constructing multivariate distributions from copulas
	Dependence measures
	Fitting

	Linear regression

	R for Finance
	Market portfolio and CAPM
	Mean-variance portfolio
	Capital Asset Pricing Model (CAPM)

	The binomial model
	One-period binomial model
	Multiperiod binomial model

	The Black and Scholes model
	Preliminars: Brownian motion
	The Black and Scholes formula
	Greeks

	R for Insurance
	The collective risk model
	Discretization of claim amount distributions
	Calculation of the aggregate claim amount distribution

	Ruin theory
	The surplus process
	The adjustment coefficient
	Probability of ruin
	Reinsurance

	References

